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*e potential of predicting maturity using total soluble solids (TSS) and identifying organic from inorganic pineapple fruits based
on near-infrared (NIR) spectra fingerprints would be beneficial to farmers and consumers alike. In this study, a portable NIR
spectrometer and chemometric techniques were combined to simultaneously identify organically produced pineapple fruits from
conventionally produced ones (thus organic and inorganic) and also predict total soluble solids. A total of 90 intact pineapple
fruits were scanned with the NIR spectrometer while a digital refractometer was used to measure TSS from extracted pineapple
juice. After attempting several preprocessing techniques, multivariate calibration models were built using principal component
analysis (PCA), K-nearest neighbor (KNN), and linear discriminant analysis (LDA) to identify the classes (organic and con-
ventional pineapple fruits) while partial least squares regression (PLSR) method was used to determine TSS of the fruits. Among
the identification techniques, the MSC-PCA-LDA model accurately identified organic from conventionally produced fruits at
100% identification rate. For quantification of TSS, the MSC-PLSR model gave Rp� 0.851 and RMSEC� 0.950 °Brix, and
Rc� 0.854 and RMSEP� 0.842 °Brix at 5 principal components in the calibration set and prediction set, respectively. *e results
generally indicated that portable NIR spectrometer coupled with the appropriate chemometric tools could be employed for rapid
nondestructive examination of pineapple quality and also to detect pineapple fraud due to mislabeling of conventionally produced
fruits as organic ones. *is would be helpful to farmers, consumers, and quality control officers.

1. Introduction

Pineapple (Ananas comosus (L.) Merr) is the most eco-
nomically significant crop in the family Bromeliaceae with
exceptional juiciness, vibrant tropical flavour, and immense
health benefits. Pineapple fruit is a good source of vitamin C,
fiber, and other minerals. It also contains sugar, bromalin
(protein-digesting enzyme), citric acid, malic acid, vitamins
A and B, and excellent amount of fiber [1]. Quality evalu-
ation and assurance of pineapple fruits before export, during
processing, and in the fresh market is a required activity to

ensure quality and safety. *ese are normally based on
internal quality traits such as total soluble solids (TSS),
firmness, and acidity. However, TSS (°Brix) has been
established as the most vital internal quality indicator. For
instance, TSS is among the most important internal quality
attribute in determining fruit maturity and harvesting time
as well as assessing and grading postharvest quality fruits [2].

At present, the conventional technique for the de-
termination of the internal quality parameters of fruits such
as pineapple involves destructive means. *is method is
usually cumbersome and wasteful. It requires specialised
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equipment, elaborate procedures, and trained personnel,
which results in high analysis costs and does not allow for the
entire fruits produced to be analyzed [3]. Oftentimes, a
representative sample is used to predict the entire fruits and
this normally leads to misjudgement. *erefore, rapid
nondestructive prediction of TSS in pineapple would be of
great value in determining the best harvesting time with vital
consequence on its eating quality. *is would be timely in
meeting the ever-increasing consumer demand for consis-
tent high-quality fruits.

Furthermore, the high price enjoyed by selling organi-
cally produced pineapples as against conventional ones has
led to mislabeling also known as food fraud to gain undue
financial advantage. Studies have revealed that consumer
demand for organic food is growing and organic agriculture
is more profitable due to higher price farmers receive for
their produce [4, 5]. Organic production in general is a
system which excludes the use of synthetic fertilizer, pes-
ticides, growth regulators, and other agrochemicals [6].
However, the techniques used for detecting the differences
(organically produced fruits such as pineapples from con-
ventional ones) are relatively expensive, destructive, and
time consuming and often require elaborate sample prep-
aration. Hence, simultaneous detection of pineapple fruit
quality parameters (authenticity and quantification) using
portable NIR spectrometer and chemometric technique
would be very beneficial. *is could offer rapid examination
of pineapple fruit quality.

Near-infrared spectroscopy provides an alternative for
the determination of pineapple quality parameters. *is
method provides rapid and nondestructive detection of food
quality and safety. It has found its use for qualitative and
quantitative analysis in the food industry. NIR spectroscopy
is simple, rapid, and nondestructive and requires minimal or
no sample preparation. According to other authors, NIR
spectroscopy could be one of the most commonly used
techniques due to its speediness, noncontact, and low op-
erating cost [7–9]. For fruit quality measurements, NIR
spectroscopy has been used to detect nitrate levels in intact
pineapple [10], soluble solids content and acidity in kiwifruit
[11], and pear internal quality indices [12]. Furthermore,
miniaturization of NIR spectroscopy has resulted in the
development of commercial handheld or portable spectro-
scopic systems that offer additional speed, simplicity, and
sensitivity. It also presents an ideal tool for agrifood quality
evaluation for in situ measurements due to its portability
[13, 14]. Other researchers have used handheld or portable
NIR spectrometers to determine fruit quality parameters
such as TSS, TA, and sugar content in fruits [7, 15, 16].
Furthermore, Cayuela and Weiland used two portable
spectrometers to predict several quality parameters in intact
oranges [17] while Sánchez et al. studied by improving the
performance of portable NIR instrument for intact nec-
tarines [18]. However, and to the best of our knowledge, no
researcher has investigated the feasibility of using portable
NIR spectrometer coupled with chemometric techniques to
simultaneously discriminate organically produced pineap-
ples and conventional ones and also predict total soluble
solids (TSS) nondestructively.

*erefore, the main objective of this study was to
evaluate the potential of using portable NIR spectrometer for
rapid and nondestructive identification and quantification of
pineapple quality parameters such as TSS of intact pineapple
fruits. *e specific objectives were to determine the best
multivariate technique for identification and to predict TSS
of intact pineapple fruits.

2. Materials and Methods

2.1. Pineapple Fruit Samples. In this study, 90 pieces of
sugarloaf pineapple fruits at different maturity stages were
obtained directly from pineapple farmers in the Central
Region of Ghana and transported to the University of Cape
Coast, School of Agriculture Teaching and Research Labo-
ratory. *ese fruits comprise 30 pieces of organically pro-
duced pineapple fruits and 60 pieces of conventionally
produced pineapple fruits. *e fruits were then stored at
26°C (±1°C) for two days before measurements were taken.

2.2. Sample Spectra Acquisition. *e spectrum of each
pineapple was collected in the reflectance mode using a
handheld spectrometer (SCIO™) with spectra range between
740 nm and 1070 nm in a 1 nm resolution for spectra data
recording. For each fruit, the lower part was scanned three
times after rotating it at 120°. *e scanning was done at an
ambient temperature of 26± 1°C with a humidity of 60%.
Figure 1 shows the setup of the scanning processing using
SCIO NIR spectrometer.

2.3. Reference Measurements (TSS/°Brix). Total soluble
solids (TSS) contents were determined using a digital
refractometer (model: PAL-1, °Brix range of 0–35%;
Atago, Tokyo, Japan) according to the methods described
by others [15, 16, 19]. For each pineapple fruit, the base
was selected and juiced. About 1.0 ml juice was then taken
for TSS measurement with a digital refractometer. Trip-
licate measurements were performed and the results
expressed as °Brix.

2.4. Data Partition. *e raw dataset (from the 90 samples)
after preprocessing with suitable techniques was divided into
two subsets, calibration set (data from 68 samples) for de-
veloping the model and prediction set (data from 22 sam-
ples) for evaluating the predictive ability of the constructed
models. To avoid bias, 75% of data from both organic and
inorganic samples were selected as the calibration set while
the remaining data were selected as the prediction set. As
shown in Table 1, the members in each set were selected in
order to come to a 3/1 division of calibration set/prediction set.

2.5. Software Device. Spectra data recordings stored in a
cloud-based dataset with their corresponding reference
value for time of scanning were downloaded using a research
license of SCIO lab and imported to MATLAB version 9.5.0
(Mathworks Inc., USA) with Windows 10 Basic for data
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processing for all preprocessing treatments and multivariate
algorithms.

2.6. Spectra Preprocessing Techniques. *e average raw
spectra of the pineapple samples are shown in Figure 2(a)
while the other pretreatment spectra are also shown in
Figures 2(b) and 2(c). *e activity of preprocessing of the
spectra data is an integral part of modelling to eliminate
background information and noise from the useful prop-
erties of the scanned samples [3, 20]. In this research, two
spectra preprocessing techniques (mean centering (MC) and
multiplicative scatter correction (MSC)) were applied be-
cause the models developed using the raw spectra data did
not give the desired results.

MC is normally used as resolution enhancement
method, and it is known to work by simply adjusting a
dataset to reposition the centroid of the data to the origin of
the coordinate system [21].

Si � Sij − Sim. (1)

MSC on the other hand is a useful preprocessing
technique for the correction of scattered light and in-
clination of baseline variation. For more information, refer
to other authors [21, 22]. For spectra with additive effect (xi)
and multiplicative effect (yi), it can be represented as

Si � xi + yiSm + ei, (2)

where Sm is the mean of the set of spectra. *e residual error
vector ei gives information about the random noise. Hence,
the MSC-corrected spectra are calculated as

Si corrected �
Si − xi( 􏼁

yi

, (3)

where for a measured data containing a set of spectra Si
(i� 1, 2, . . ., K) with data points Sij ( j� 1, 2, . . .,N), the mean
of these data could be represented as Sim, which is the mean
of that spectrum.

2.7. Principal Component Analysis (PCA). PCA is an un-
supervised data description and dimension reduction
techniques which is mostly used to deal with large spectra
data [23]. It normally involves the first step of data analysis

in order to detect patterns from the data matrix as it brings
out visualized data trends in dimensional space [24]. For
more information, refer to these authors [25].

2.8. Multivariate Models. *e development of computers
and software programmes is making chemometric tech-
niques a very powerful tool for processing NIR spectra data
as it overcomes the difficulty of multicollinearity and gives
scientific statistical inferences for meaningful conclusions to
experimental results [26, 27]. Choosing the best method is
the next challenge as it is quite a cumbersome process since
there existed quite a lot of types. In this research, K-nearest
neighbor (KNN) and linear discriminant analysis (LDA)
were employed comparatively.

K-nearest neighbor is a linear and nonparametric clas-
sification method which works based on a distance function
that measures the difference or similarity between two
stances [28, 29]. For KNN, parameter K influences the re-
sults of the classification model; hence, the choice of K is
normally optimized by calculating its potential with several
K values (normally small K values of 3 or 5). It must be
known that KNN cannot work well if large differences are
present in the number of samples in each class [25]. *is
therefore makes KNN tool a more suitable technique for
modelling similar class groupings.

Linear discriminant analysis is a linear and parametric
supervised pattern recognition technique which has found it
useful for analyzing spectra data. It works by finding linear
combination of features which brings out clearly the ratio of
between-class variance and reduces the ratio of within-class
variance [30]. For more information, refer to [25]. It is
important to note that the performance of LDA is based on
the number of principal component factors.

2.9. Partial Least Squares (PLS). Partial least squares (PLS) is
a well-known linear multivariate method used for spectra
data processing and it can analyze data with strong collinear,
noisy, and redundant variables. For more information, refer
to [31, 32]. *e results of the PLS model are normally
evaluated by using three main parameters, namely, the root
mean square error of cross-validation (RMSECV), the root
mean square error of prediction (RMSEP), and the corre-
lation coefficient (R), among others [33]. *ese parameters
were calculated by the following equations:

RMSECV �

������������

􏽐
n
i�1 􏽢y\i − yi􏼐 􏼑

2

n

􏽳

, (4)

RMSEP �

�����������

􏽐
n
i yi − 􏽢yi( 􏼁

2

n
,

􏽳

(5)

R �

���������������

1 −
􏽐

n
i�1 􏽢yi − yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2

􏽶
􏽴

, (6)

where n� the number of samples, yi � the reference mea-
surement results for sample i, 􏽢y\i � the estimated result for

NIR spectrometer

Pineapple

Mobile phone

Figure 1: Setup of scanning processing.
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sample i when the model is constructed with sample i re-
moved, ŷi � the estimated results of the model for the sample
i, and y� the mean of the reference measurement results for
all samples.

3. Results and Discussion

3.1. Spectra Presentation/Analysis. 
e 	ngerprint from the
spectra dataset was used to create the statistical models. It
could be observed from the spectra pro	le in Figures 2(a)–
2(c) that the major peaks are around 960–1050 nm. 
e
wavelength range corresponds to O-H 2nd overtone and
N-H 2nd overtone, which represents H2O, ROH, ArOH
(OH bond on the aromatic group), and NH2 functional

groups [34]. 
ese groups are familiar with major constit-
uents of water, glucose, sucrose, and cellulose of pineapples.
TSS is an organic molecule that contains C-H, O-H, C-O,
and C-C bonds, and NIR spectroscopy could be used to
nondestructively measure this molecule [35, 36]. After
preprocessing of the spectra dataset with MC and MSC, a
clear separation between organic and inorganic pineapple
fruits appeared in MSC pretreatment spectra pro	le as
shown in Figure 2(c). 
is suggests that organic and in-
organic pineapple fruits could be di�erentiated within
800 nm and 1070 nm range using MSC pretreatment tech-
nique. 
e MSC is therefore a useful tool for correcting
baseline shift and light scattering problems related to the
spectral dataset as mentioned by other authors [22].

Table 1: Reference measurement of TSS (°Brix) of total samples used.

Subsets Number of samples
Total soluble solids (TSS) content

Range (°Brix) Mean (°Brix) Std (°Brix)
Total samples 90 11.90–18.60 14.81 1.82
Calibration 68 11.90–18.59 14.86 1.88
Prediction 22 12.00–17.50 14.66 1.65
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Figure 2: NIR spectra of pineapple fruits. (a) Raw, (b) pretreatment with MC, and (c) pretreatment with MSC.

4 Journal of Spectroscopy



0.2

0.1

0

–0.1

–0.2

1

0

–1 –2

0

2

4
PC2 (16.3301%)

PC1 (82.1064%)

PC
3 

(1
.3

85
2%

)

Organic

Inorganic

(a)

PC2 (7.3528%) PC1 (91.6669%)

PC
3 

(0
.6

36
52

%
)

Organic

Inorganic

0.1

0.05

0

–0.05

–0.1
0.2

0

–0.2
–1

–0.5
0

0.5
1

(b)

Figure 3: Continued.

Journal of Spectroscopy 5



3.2. Principal Component Analysis (PCA). Principal com-
ponent analysis was used to identify cluster trend in the
spectra data. From the results obtained, it was observed that
PCA done on raw andMC preprocessed spectra data did not
give any clear cluster trends or separations as shown in
Figures 3(a) and 3(b). However, MSC-PCA technique gave a
separation with clear cluster trend as shown in Figure 2(c).
Again this further proves the unique characteristics of MSC
as an e�ective technique for baseline light scattering cor-
rections as proposed by Geladi and coworkers [22]. PCA was
able to identify the most important directions of the vari-
ability in the multivariate data space (X matrix) and to
determine the primary phenomena in the spectra dataset
[19]. 
e PCs (PC1, PC2, and PC3) contain spectra in-
formation and its corresponding chemical compositional
information hence accounted for 99.36% of the total vari-
ance that existed for the 90 pineapple samples used in this
study. Pineapples have a considerable di�erence in their
chemical properties according to their preharvest activities
and postharvest practices that categorize them as either
organic or inorganic.

3.3.Classi�cationModels. In this study, KNN and LDAwere
attempted for developing classi	cation models for classi-
fying organic and inorganic pineapple fruits.


e results of the classi	cation models are shown in
Table 2. 
e two classi	cation models used performed well

using MSC-PCA dataset. KNN and LDA had classi	cation
rate above 98% in both the calibration set and prediction set
at optimal principal components (PCs)� 3, respectively.

is means MSC-PCA preprocessing enhanced the per-
formance of both KNN and LDA as compared to raw and
MC dataset. On the other hand, LDAwas slightly superior to
KNN in the training set. 
is means LDA was well able to
	nd the linear combination of features and the resulting
combination used was a better linear classi	er. More so, it
could be explained that the good accuracy obtained by the
model could be as a result of complex distinct organoleptic
and nutritional properties between organically grown
pineapple fruits as against conventionally grown ones. 
is
phenomenon is further supported by the evidence that
organic production excludes the use of synthetic fertilizer,
pesticides, growth regulators, and other chemicals [6] and
impact of the fruit’s quality and safety due to chemical
residues. Other studies have also revealed that organically
produced pineapple fruits comparatively have high vitamin
C and moderate acidity [4] as well as highest total soluble
solids contents [37].

3.4. Quanti�cation Model. Partial least squares model was
used for the determination of TSS (°Brix) in both organic
and inorganic pineapple fruits. From Figure 4, the measured
values correlated linearly with NIR predicted measurements.
However, there were some few outliers which subsequently
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Figure 3: PCA score plot of spectra data. (a) Raw, (b) preprocessed with MC, and (c) preprocessed with MSC. MSC with PCA technique
gave a separation with clear cluster trend.
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affected the PLS model. From Table 3, it could be seen that
the MSC-PLS model was the best comparatively with pa-
rameters of Rc� 0.851, and RMSEC� 0.950 °Brix in the
calibration set while Rp� 0.854 and RMSEP� 0. 842 °Brix in
the prediction set. *is result indicates that proper pre-
processing technique is an efficient way to improve the
accuracy of the PLS model [33]. For a good model, R value
should be close to unity while RMSEC and RMSEP should be
close to zero. *e weaknesses of this MSC-PLS model could
be attributed to the characteristics of the PLS model, because
classic PLS model was built using full spectrum range, which
normally consists of useful and irrelevant or redundant
information (noise). *e noisy spectrum normally reduces
the performance of the model. Hence, to improve this model
for intact pineapple quality evaluation, other known PLS
types should be investigated while comparing with other
nonlinear algorithms. Notwithstanding, the results compare
favourable with those found by other authors for using VIS-
SWNIR spectroscopy for predicting soluble solids content in
pineapple fruits [15]. More so, it must be stated that through
favourable statistical correlations, the NIR multivariate
models predicted the °Brix values.

3.5. Selection of Vital Wavelengths. When developing the
PLS model, there is the need to consider how much each
wavelength contributes to the final outcome. Figure 5 shows
PLS loading weights of the best model and this explains how

the complexity of the PLS model was developed. *e
loadings show how well the wavelength was taken into
consideration by the model components. It is used to un-
derstand how much each x-variable (wavelengths) con-
tributes to the meaningful variation in the data and to
interpret variable relationships as well as interpret the
meaning of each model component [38]. *e loading
weights were normalised so that the length and directions
could bemademeaningful. From Figure 5, we can see several
peaks at certain wavelengths (754, 760, 823, 850, 884, 901,
910, 950, and 960 nm) which are considered to be more
useful for the developed PLS model used for determining
total soluble solids (TSS, °Brix) content in pineapples. *ese
vital observed wavelengths in this study are closely related to
the chemical composition in pineapple fruits. Specifically,
these wavelengths are related to the third overtone region
comprising OH and CH stretching vibrations of sucrose
solutions [39], an important component of TSS. For
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Figure 4: Reference measured versus NIR prediction of TSS in the calibration set and prediction set.

Table 3: Prediction results of PLS models under different pre-
treatment methods.

Pretreatment Factors
Calibration Prediction

R RMSEC
(°Brix) R RMSEP (°Brix)

Raw 5 0.559 1.499 0.617 1.274
MC 6 0.504 1.563 0.539 1.363
MSC 5 0.851 0.950 0.854 0.842

Table 2: *e performance of classification models influenced by preprocessing techniques.

Model Number of principal components
Correct classification rate (%)

Calibration set (68) Prediction set (22)

KNN
Raw 3 45.56 50.00
MC 3 52.22 60.00
MSC 3 98.89 100.00

LDA
Raw 3 61.11 66.67
MC 3 55.56 50.00
MSC 3 100.00 100.00
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example, the wavelengths at 910, 950, and 960 nm are related
to the chemical group of C-H and O-H which are attributed
to TSS, while the region of 750–820 nm reveals sucrose,
glucose, and fructose [9, 39].

4. Conclusion


e research has shown the potential of handheld NIR
spectroscopic technique for rapid nondestructive mea-
surements of pineapple quality. MSC gave the best PCA
cluster trend with clear separation in the 	rst three PCs. 
e
overall results showed that handheld spectrometer coupled
with MSC-PCA+LDA model could be used to identify or-
ganically and conventionally grown intact pineapple fruits
with 100% identi	cation rate in both the training set and
prediction set, respectively. On the other hand, PLS re-
gression model could be used for predicting TSS (°Brix) with
RMSEC� 0.95 and RMSEP� 0.84 at 5 factors with an ac-
curacy of 85% in both the calibration set and prediction set,
respectively. 
ere is a potential of these models to be
imported into mobile phone technology for e�ective all-
round application.
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