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We report a set of experimental investigations on the break-up of a liquid drop when falling in a miscible solvent,

with the density difference being positive, or negative, or zero. Non-dimensional numbers, derived from the charac-

teristic times of the drop evolution, account for the hydrodynamic instabilities and the self-similar character of the

fragmentation process. The role of the initial surface tension at the air-drop interface is explored, leading to scaling

laws for the drop volume V and the various height h reached by the drop before it fragments into smaller droplets.

From the first break-up to the onset of diffusion, the fragmentation process is shown to have a fractal structure,

which is associated to universal power laws for h and V during the dynamical processes associated to the break-up

phenomena.

1. Introduction

The break-up process of a drop falling in a miscible
solvent was first considered qualitatively by [1].
The experimental investigation of such transient
dynamical phenomena reveals the competition be-
tween the break-up induced by the non-linear hy-
drodynamic processes and the local damping due
to diffusion of the velocity and concentration gra-
dients [1]. Indeed, the dynamics of fragmentation
of such a liquid drop falling into a miscible fluid is
ruled by interfacial surface tension associated with
density difference, known as Rayleigh-Taylor insta-
bility [2] (R-T), and the presence of velocity gradi-
ents between the drop and the fluid composing the
solvent, which is referred to as Kelvin-Helmholtz
(K-H) instability [2,3]. In order to understand
in detail the competition between the hydrody-
namic instability and the diffusional mixing, dif-
ferent miscible fluids of different compositions are
tested. It is shown that the fragmentation process
is ruled by two non-dimensional numbers, namely
the Fragmentation number F and Schmidt num-
ber S, derived from three characteristics times of
the drop dynamics: F = g∆ρV/µD and S = ν/D,
where g is the gravity acceleration, ∆ρ is the den-
sity difference between the drop and the solvent,
V the drop volume, ν = µ/ρ the kinematic viscos-
ity, µ and ρ the viscosity, respectively, the density
of the solvent, and D the diffusion constant of the
drop into the solvent [4,5].

∗buahbass@hotmail.com

By changing the fluid parameters, such as µ, ρ
and D for different drop volumes V , the drop
break-up can be observed at different cell heights
h. However, by controlling ∆ρ, V , and µ at fixed
D, it was found that above a critical value Fc of
the Fragmentation number, the drop breaks into a
number N1 of fragments, which increases as S de-
creases. If each of the N1 secondary droplet has an
individual Fragmentation number still higher than
Fc, then a second break-up occurs. For the fluid
mixtures considered, the fragmentations went not
beyond three steps, since at the third stage the
tertiary droplets (with N = N1N2, N2 being the
number of fragmentations of each one of the N1

secondary droplets) were small enough to have an
individual fragmentation number below Fc [4].

Inferring from the experimental observations, it
can be explained that the K-H instability is pre-
dominant in the early stages of the process, when
the drop is deposited on the free surface of the
solvent and, upon falling, develops a vortex ring
expanding horizontally. Once the ring is formed,
R-T instability sets in at the interface due to the
density difference between the ring and the solvent.
Behind the ring, the drop fluid leaves a membrane
that looks like a turban, in concave shape in the
case of positive density difference and in a reversed
convex shape in the case of negative density dif-
ference. At this stage, an undulation begins to
be amplified at the interface along the torus un-
til a break-up into secondary droplets takes place.
The process replicates itself if the velocity gradient



The African Review of Physics (2014) 9:0009 54

and the density difference are large enough for the
Fragmentation number to be greater than its criti-
cal value. The process stops as viscous dissipation
and concentration diffusion overcome the K-H and
R-T mechanisms.

In this paper, three experimental investigations
are presented, by focusing on the fluid parameters.
Depending on the density difference ∆ρ between
the drop and the solvent we have studied the fol-
lowing scenarios: 1. ∆ρ positive (that is, the drop
is heavier than the solvent) and the subsequent
break-up process associated with fractalization un-
til diffusion sets in; 2. ∆ρ zero (that is, the drop
and the solvent are made of the same fluid) and
investigation of the role of initial surface tension
of the drop against air; 3. ∆ρ negative (that is,
the solvent is heavier than the drop), showing an
inversion of velocity with the drop fragments going
upwards to the free surface of the solvent.

2. The Experimental Setup and
Measurements

The experimental set up, as shown in Fig. 1, con-
sists of a glass cell with a base of 10x10 cm2 and
40 cm high, filled with the solvent and mounted
on a rigid metallic support. On top of the cell is
mounted a microsyringe that releases a drop close
to the centre of the free surface at zero initial ve-
locity and h = 0 (h being the downward vertical
coordinate within the solvent). The behaviour of
different fluid mixtures, namely the solvent being
made up of distilled and purified water doped at
0, 10, 15, 25% glycerin and the drop made up of dis-
tilled and purified water with a glycerin concentra-
tion varying from 0 to 40%, is investigated.

 laser

40 cm

10 cm

CCD

CCD

bottom view

side view

microsyringe

FIG. 1: Experimental setup: a solid state laser beam (λ =
532 nm) illuminates laterally the cell; fluorescence from the
drop is recorded by a charge-coupled device (CCD) camera.

The cell was illuminated by diode pumped solid

state laser (λ = 532 nm). The drop was seeded
with a small amount of sodium fluorescein dye
(10−9 mol/litre), so that the emitted fluorescence
from the laser illumination would enable its visual-
ization. Side and bottom views of the drop inside
the solvent are imaged by an objective onto a CCD
camera consisting of 512 x 512 pixels, then regis-
tered by a video recorder and digitized by a frame
grabber with 8-bit resolution. The CCD camera
has a standard video acquisition rate, with each
frame lasting for 40 ms. The objective of the cam-
era is adjusted in such a way that the focal length
is sufficiently long to obtain sliced images at differ-
ent heights through the cell. The experiment was
carried out for different drop sizes corresponding
to a drop volume ranging between 1 to 24 µl.

2.1. The drop break-up

Demonstrating the break-up phenomena with dif-
ferent ∆ρ/µ, V and for ∆ρ > 0, (that is the drop
is heavier than the solvent), the drop composition
of 40% glycerin, 60% of water and solvent compo-
sition of 25% glycerin, 75% water were chosen and
the drop volume was varied from 1 to 24 µl. Typ-
ical experimental pictures of bottom views of mul-
tiple fragments after the first break up are shown
in Fig. 2 and side views of successive multiple frag-
mentations are shown in Fig. 3. Specifically, with
the drop of 2 µl and 15% glycerin mixed with 85%
of water falling in the same solvent composition
(25% glycerin and 75% water), that is, the solvent
is heavier than the drop, a typical behaviour of
density difference less than zero, ∆ρ < 0, is shown
in Fig. 4. The fast injection of the drop, the ring
formation, its undulation and subsequent fragmen-
tation into four droplets, then rising up towards the
free surface of the surface are illustrated

a) b) c) d) e)

FIG. 2: Experimental snapshots showing examples of mul-
tiple fragments after the first break- up of the torus into: a)
three, b) four, c) five, d) six, and e) seven fragments.

In order to observe conveniently the initial
stages of the falling drop phenomena, the drop evo-
lution is slowed down by playing on the quantity
∆ρ/µ. A drop of 90% glycerin and 10% water with
a volume of 1 µl and seeded with carbon particles
(size ∼ 70 µm) is made to fall in solvent of 60%
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FIG. 3: Side views of the drop falling in a lighter solvent;
a) the drop, initially spherical, has become a torus; some
regions with greater density give rise to successive fragmen-
tations, b) two or c) six, depending on the fluid parameters.
In d), the six secondary droplets of panel c) split again dur-
ing the last stage of fragmentation.

glycerin and 40% water. The falling drop gener-
ates growing vorticity and shear at the interface
between the two fluids. Thus, inside the cell the
drop transforms into a ring shape leaving behind a
concave membrane attached to the torus to form a
turban. This is evident in Fig. 4 and Fig. 5, sug-
gesting that the turban instability manifests itself
in the drop break-up process independently of the
type of density difference.

The cascade of fragmentations as seen in Fig. 3
stops after three steps, when the radius of the ter-
tiary droplets has become so small that diffusion
sets in and takes over the process. Such observa-
tions of drop break-up and its disappearance by
diffusion is assigned by the non-dimensional num-
ber F . This is expressed as the ratio of the two
characteristic times of the drop evolution. The
falling drop behaves in such a way that the down-
ward force due to gravity is proportional to the
density difference ∆ρ between the two fluids. Af-
ter a transient regime, an equilibration time τ ′ =
ρr2/µ (where ρ is the drop density, r the drop
radius and µ the surrounding fluid viscosity) is
reached, when the gravity force is compensated by
the Stokes force that subsequently is proportional
to the product of the drop velocity and viscosity of
the surrounding fluid. Thus, in the sedimentation
regime, the asymptotic velocity v∞ ∼ g∆ρr2/µ is
reached.

a b c

d e f

g h i

FIG. 4: Side views of the drop falling in a heavier solvent;
a) the drop injection (t = 0.08 s), b)c) the ring formation
(t = 0.20, 0.32 s), d) the development of the turban (t =
0.44 s), e) f) onset of the fragmentation (t = 0.56, 0.68 s),
g) h) i) rise up of the fragments (t = 0.80, 0.92, 1.04 s).

Therefore, the fragmentation of a drop falling
with the asymptotic velocity implies the onset of a
circular velocity, and this requires at least a time
τ1 corresponding to the transfer of v∞ across the
drop radius, that is, τ1 = r/v∞ ∼ µ/(∆ρgr). Such
a process is counteracted by diffusion, which takes
place over the time τ . The fragmentation then
stops at a radius where τ1 becomes longer than
a fixed fraction of τ , denoted by τ2 = r2/D and
assigned as the diffusion time. The Fragmentation
number F is thus defined as [4]

F =
τ2
τ1

= g
∆ρ

µ

V

D
(1)

and fragmentation takes place when F is greater
than Fc, the critical Fragmentation number.

When initial drops with F > Fc undergo frag-
mentation, then the daughter drops may or not
fragment again, depending if their volume is such
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that F is greater or smaller than Fc. Plotting
V/D against ∆ρ/µ, Fc was measured to be (2.8±
0.1)x105, as derived from the boundary line distin-
guishing between the break-up and non break-up
of the torus developing from drops with various
fluid compositions [4]. F is found to be indepen-
dent of the nature of the two miscible fluids. How-
ever, it was observed that τ ′ is smaller than τ1 and
τ2. Thus, within the τ1 and τ2 interval, there is
a break up time τbu for the first fragmentation to
take place. It was assumed that τ ′ is negligible in
the process.

FIG. 5: Evolution of a falling drop with r = 0.29 cm and
∆ρ = 0.0789 g/cm3. a)-f) Sequence of lateral views taken
at the following positions from the free surface and times
from the deposition: a) 2.0 cm, 1.05 s; b) 6.0 cm, 3.03 s; c)
8.0 cm, 4.0 s; d) 10.0 cm, 5.2 s; e) 13.0 cm, 7.34 s; f) 16.0
cm, 10.0 s. Panel e) shows the appearance of the turban
instability and panel f) the break-up of the torus induced
by the R-T instability.

Considering the horizontal fragments, as in
Fig. 2, it is observed that two forces, namely the
gravity and the viscous drag, act on the spher-
ical drop falling in a quiescent liquid. The net
force is given by the sum of the buoyancy force,
Fb ∝ ∆ρV g, and a drag term, Fd ∝ µrv. The
reference time is τ ′ = Mv/Fd with M the drop
mass M = ρV . Skipping prefactors of order of
unity, τ ′ = ρr2/µ. Thus the sedimentation ve-
locity v∞ ∝ ∆ρgr2/µ is reached for times much
longer than τ ′. In this situation, the break up oc-
curs before that the transient duration τ ′ is over,
so that v∞ is never reached. By this observation,
it is shown that τ1 = r/v∞, which is the time for
the transfer of v∞ across the drop radius, serves as
the minimum time for the formation of the vortex
ring. The subsequent break up time τbu is longer
than τ1 and less than τ ′ and τ2. Exploring fur-
ther the fragmentation process , we have that for
τ ′ << τ1 the ring disappears by diffusion, while for
τ ′ > τ1 the torus experiences local perturbations
coming from the increasing velocity. As a conse-
quence, the ratio [5]

T =
τ1
τ ′

=
µ2

gρ∆ρV
(2)

is decreased and there is increasing number of in-
dividual horizontal fragments associated with the
first break up. By relating the diffusion time τ2 to
the equilibration time τ ′, the ratio

S =
τ2
τ ′

=
µ

ρD
(3)

can be defined as the second characteristic non di-
mensional number of the problem. This coincide
with the Schmidt number, which depends only on
the fluid properties [5]. One can control one of the
fluid parameters in such a way that when τ ′ is in-
creased and S decreased, then the number of the
horizontal fragments would increase.

2.2. The drop fragmentation and fractal
process

In order to understand the self-similar process of
the drop fragmentation, the same experimental set
up as in Fig. 1 was used, but illuminating hor-
izontally across the solvent with a collimated ar-
gon ion laser beam shaped as a thin lamina (500
µm) by means of a cylindrical lens. By chang-
ing the height of the lamina, the drops at different
times and heights were followed. Beneath the cell
is placed a plane mirror at an angle of 45◦, that
reflects the fluorescence induced by the passage of
the drop through the two-dimensional slice of light.
The drop break up at different cell heights is ruled
by the fluid parameters and the cell is large enough
to exclude the influence of the lateral boundaries.
Using different drop volumes, a series of sectional
images ranging from 64x64 up to 320x320 pixels
and recorded at ten different successive heights and
times were analyzed. Each digitized image con-
tained levels of the normalized intensity varying
from 0 to 255.

Using a drop of volume 2 µl, the height h(t) ver-
sus time was plotted, as shown in Fig. 6. Three dis-
tinct regions can be distinguished, namely: region
I indicates the initial drop fall, region II shows the
fragmentation process and region III corresponds
to the onset of diffusing droplets. We formulate a
power law for the regions as h ∼ tγi with γi being
different exponents. By plotting the scaling ex-
ponents against drop volume as shown in Fig. 7,
it can be deduced that γi ∼ V x as follows: in
region I, we have a relation of γI ∼ V 0.50±0.02,
in region II, γII ∼ V 0.00±0.02 while in region III,
γIII ∼ V 0.22±0.02. The second region, which is the
fragmentation region, shows a universal behaviour
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FIG. 6: Measured drop height as a function of the arrival
time t, for an initial drop volume of 2 µl. The two verti-
cal dashed lines mark the three regions identified as: I the
first break-up region, ruled by the Fragmentation number
F , II the fragmentation region, that depends on the Schmidt
number S, and III the region of pure diffusion.

with an exponent γII = 0.34 ± 0.02 independent
from the initial drop volume.

FIG. 7: Scaling exponents γI , γII , and γIII of the height
vs time h ∼ tγ for the three different regions, respectively,
as a function of the initial drop volume. The points are
experimental data and the solid lines are best fits with
γI ∼ V 0.50±0.02 for the onset of the turban instabil-
ity, γII ∼ V 0.00±0.02 for the fragmentation region and
γIII ∼ V 0.22±0.02 for the onset of diffusion. The sec-
ond region shows a universal behaviour with an exponent
γII = 0.34±0.02 independent from the initial drop volume.

Moreover, with the recorded digitized images
and by using a box counting algorithm [6], we have
computed the fractal dimension D0 of the space
occupied by the drop. The image space is parti-
tioned into equally sized cubes of side ε. If N(ε) is
the number of cubes required to cover the space,
the Renyi dimension can be calculated according
to

Dq = limε→0
1

q − 1

ln
∑N(ε)
i=1 pqi

ln ε
(4)

Where, pi is the image probability in the i − th
box defined as follows: in the discrete frame pro-
cessing, we split the NxN pixels frame into mxm
pixels boxes, where m specifies the discrete ε value
selected. If we call x(y) the horizontal (vertical)
pixel coordinates, then the i− th box will span the
coordinates from xi to xi+m and yi to yi+m. Call-
ing Ixy the intensity recorded at the pixel (x, y),
the total signal is given by

It =

N∑
x,y=1

Ixy (5)

whereas the local signal in the i − th box is given
by

Ii =

xi+m∑
x=xi

yi+m∑
y=yi

Ixy (6)

With this in mind we define as the image proba-
bility of the i− th box the quantity

pi =
Ii
It

(7)

According to Eqn. (4), if log-log plots of

[
∑N(ε)
i=1 pqi ]

1/(q−1) versus ε are plotted, the slopes
of the linear regions correspond to Dq [7]. Dq are
meaningful only in the range −5 < q < 5. Dq

curves can be derived for different drops at differ-
ent heights (such as 12, 22, 27, 32 and 47 mm) for
the fractalisation region and (80, 110, 140, 170 and
260 mm) for the decreasing fractalisation region
(diffusion). From the Dq curves, the f(α) curves
were calculated with the Legendre transform [8]
with d = 2 for two-dimensional sections of the flow
by using the following expressions:

α =
d

dq
[(q − 1)Dq] + 1− d (8)

f(α) = q(α− 1 + d)− (q − 1)Dq

The function f(α) describes how densely a sin-
gularity of strength α is distributed over the ana-
lyzed set. Thus, f(α) can also be seen as the fractal
dimension of the subset over which the singulari-
ties scale as α. A set characterized by a spectrum
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of these dimensions is called multifractal since it
can be thought of as constituted by many fractal
subsets [9]. A plot of f(α) versus α curves were
done [10] for different height regions (h from 12 to
47 mm) and (h from 80 to 260 mm) of the drop
sections for a drop volume of 4 µl. From these
curves, the fractal dimension D0 of each image was
deduced from the maximum of f(α) versus α plot.
A plot of the measured fractal dimension D0 as a
function of the cell height h is shown in Fig. 8.

FIG. 8: Measured fractal dimension D0 as a function of
the cell height h, with initial drop instability at the (torus)
and final stages (diffusion) with dimension of about 2. The
dip of the curve shows the fractalization region.

In Fig. 8, it is observed that D0 = 2 when the
drop is whole up to torus whereas at the onset of
fractalisation D0 reduces to 1.3. Once the fractal-
isation is over and inhibited by diffusion, a reverse
process, leading to the restoration of the dimension
D0 = 2, takes place. This reverse process for height
inside the cell (h from 80 to 260 mm) is slow over
a larger range. Similar results are obtained for dif-
ferent drop volumes. Thus, the drop fragmentation
is a transient fractal taking place before the estab-
lishment of pure mixing between drop and solvent.
The fragmentation cascade seems to share some
generic properties of self- similar processes [10].

2.3. Interfacial surface tension and drop
dynamics

The role of the initial surface tension of the drop
against air is investigated, showing a strong re-
lease of energy from the rupture of the interface
when the drop enters inside the solvent. Different
fluid compositions, that is, 0, 10, 20, 35 and 52% of
glycerin for different initial drop volumes at room
temperature 20 ◦C are used. The lateral and trans-
verse images are recorded and combined through a
video mixer so that both lateral and bottom views

are simultaneously displayed, showing the height h
reached by the ring and its radius R, as represented
in Fig. 9 [11].

FIG. 9: Side and bottom image of the ring stop.

In order to deduce the height at which the
ring stops, we use the energy balance between
the surface energy, 4πσr2, and the kinetic en-
ergy 4/3πr3ρv20/2, thus giving an expression as
σr2 = (ρr3v20)/6. Once the initial velocity v0 is
acquired, v0 = (6σ/ρr)/2, we account for the en-
ergy dissipation through the Stokes law so that
dv/dt = −γνv/r2 where γ = 6π is the shape fac-
tor for a rigid sphere. Integrating the Stokes law
for v(t) and the maximum height h reached by the
drop, we have

h =
1

γ

√
σ

ρν2
V

1
2 ∝ l−

1
2

ν r
3
2 (9)

Where, lν = ρν2/σ is the viscous length scale. By
substituting for σ, ρ and ν, the values tabulated in
the current literature [12], we obtain a good quan-
titative agreement between the model and the ex-
perimental results. Note that r is proportional to
V 1/3 where V is the initial drop volume.

To compare the effect of the surface tension, the
experiment was performed also by using ethanol,
which is a fluid of lower viscosity and much
lower surface tension than the mixtures of wa-
ter/glycerin. A plot of h versus V is shown in
Fig. 10, whereasR versus V is shown in Fig. 11 [11].
In Fig. 10 all the data scales as V 1/2, whereas two
scaling regions depending on the drop volume and
viscosity observed in Fig. 11. For small volumes
and large viscosities the exponent of the power law
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FIG. 10: Drop height h as a function of the initial drop vol-
ume V for different fluid compositions; empty circles: pure
water, stars: 10% glycerine in water (Gly), diamonds: 20%
Gly, triangles: 35% Gly, squares: 52% Gly, filled circles:
pure ethanol.

FIG. 11: Drop radius R as a function of the initial drop
volume V for different fluid compositions; empty circles:
pure water, stars: 10% Gly, diamonds: 20% Gly, triangles:
35% Gly, squares: 52% Gly. Solid lines have two slopes,
namely, 2/3 and 1/3. Each separate data set displays a
smooth passage from 2/3 to 1/3 slope as V increases.

fit the data with 2/3, while for large volumes and
smaller viscosities the exponent approaches 1/3.
The 1/3 and 2/3 scalings correspond to two asymp-
totic behaviours, the separation between them de-
pending on the fluid parameters.

Such observations reveal that the surface ten-
sion σ of the droplet against air plays a fundamen-
tal role in the initial stage of the dynamics of a
drop falling in a miscible fluid [13]. For zero den-
sity difference between the drop and the solvent,
we have shown that the velocity at which the drop
enters the fluid is proportional to the square root
of the surface tension and thus the dissipation vis-
cous length lν permits the rescaling of the data
for height and drop volume to universal power law

behaviours.

2.4. Path reversal of the falling drop

Several experiments with solvent heavier than the
drop were performed by changing the drop volume
and the density difference ∆ρ. In each case the
drop evolution was recorded by a CCD camera into
frames binarized and processed. On each frame,
the coordinates are noted by following the trajec-
tory until the drop stops its descent and starts rise
up, breaking into fragments. By selecting one frag-
ment out of the many, its motion is followed by
recording the coordinates of its centre of mass. The
evolution of the longitudinal coordinate h of the
centre of mass is plotted as a function of time for a
fixed drop volumes, V = 4 µl, and for different ∆ρ
as shown in Fig. 12 and for a fixed ∆ρ = 0.04505
g/cm3 and different drop volumes, V = 2, 4, 6, 8 µl
as shown in Fig. 13.
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FIG. 12: Drop height profile as a function of time for V = 4
µl; ∆ρ = a) 0.01325, b) 0.0265, c) 0.03975, and d) 0.04505
g/cm3

From Fig. 12 and Fig. 13 we can see that, once
the drop has evolved into a vortex, it stops at a
minimum height hmin, which is ruled by the initial
drop volume V . On the other hand, when fragmen-
tation takes place, the rise-up time for secondary
droplets mainly depends on the density difference
∆ρ, eventually going to infinity for ∆ρ = 0. At
small ∆ρ, the rise-up time is very long, while it
shortens as ∆ρ increases. The dynamical behav-
ior of the drop accounts for buoyancy and viscous
dissipation and is given by
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FIG. 13: Drop height profile as a function of time for ∆ρ =
0.04505 g/cm3; V = a) 2, b) 4, c) 6, and d) 8 µl.

dv

dt
=
g∆ρ

ρ
− γ ν

r2
v (10)

Where, r = κ 3
√
V and γ, κ are geometrical factors

(γ = 9/2 and κ = 0.62 for a sphere [2]). The initial
condition for the drop injection is given by v(t =
0) = v0, where v0 comes from the conversion of the
drop surface tension into kinetic translational and
rotational energy expressed as

1

2
mv20 +

1

2
Iω2 = 4πσr2 (11)

with I = αmr2 the inertial momentum of the drop
and ω = βv0/r its frequency of rotation. If all the
rotation is converted into translation, i.e., there is
no sliding, then β = 1, otherwise β > 1. We obtain
for the initial velocity of the drop

v0 = −

√
6σ

(1 + αβ2)ρr
(12)

Taking the viscous time τν = r2/γν, we derive from
Eqn. (10) the drop asymptotic velocity, v∞ when
dv/dt = 0, as

v∞ =
∆ρ

ρ
gτν (13)

Integrating Eqn. (10) from v = v0 to v = 0 the
drop fall-down time, τd, is deduced as

τd = τν ln(1− v0
v∞

) (14)

and the minimum height, hmin, reached by the
drop before rising-up is expressed as

hmin = v∞τd + v0τν (15)

The fragment rise-up time τu, if t � τν it is
given by

τu = −hmin
v∞

=| v0
v∞
| τν − τd (16)

with the total elapsed time is

τT =| v0/v∞ | τν (17)

Where, n is the number of fragments. Rescaling
the h−t data by hmin and τT , the reduced profile is
plotted as h/hmin versus t/τT as shown in Fig. 14.
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FIG. 14: Reduced h − t profiles for all the experiments in
25% glycerine doped solvent.

All the drops approximately follow the same
evolution law. The early stages of the drop injec-
tion are very similar to those observed at ∆ρ = 0:
the drop falls very fast inside the solvent and de-
velops a ring. Then, the ring stops because of dis-
sipation of the initial impulsion. The drop is said
to reach its minimum height hmin, where a velocity
reversal occurs giving way to a new instability that
leads to the fragmentation of the ring into smaller
droplets. With the density difference being neg-
ative, the secondary droplets rise up towards the
surface because of buoyancy. Thus, the dynam-
ical regime corresponds to the linear portions of
the h− t profiles just after hmin. These drop frag-
ments, when approaching the free surface of the
solvent, deviate from the linear dependence [14].
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3. Conclusions

In summary, the physics of liquid drops needs to
be unveiled in order to have more relevant prac-
tical applications in agriculture and industry [15].
The experimental characterisation of the dynam-
ical and statistical features of a drop falling in a
lighter miscible fluid can serve this purpose. The
process can be associated with three dynamical re-
gions, one corresponding to the onset of the torus
and the first hydrodynamic instabilities, the other
characterised by the successive fragmentation of
the initial drop into smaller droplets and the last
one dominated by diffusion, in which the droplets
mix with the solvent without undergoing further
fragmentations. The drop dynamics is ruled by
three characteristic times through which two non-
dimensional numbers, namely the Fragmentation
number F and the Schmidt number S, were de-
rived. While the first region of the drop becoming
a torus is ruled by F , the fragmentation region
of successive break-up is determined by S. In or-
der to understand the development of the torus at
the early stages of the drop before rupture, further
experiments were performed on the role of the in-
terfacial tension and its dissipation energy. The
initial stage of the drop injection was found to be
independent of the density difference between the
drop and the solvent being either positive or neg-
ative. In the fragmentation region, the fractaliza-
tion can be attributed to a multifractal structure
of the droplet projections at different height. By
using scaling laws on the drop volume V and var-
ious height h reached before the formation of the
torus and also during the fragmentation process,
h and V can be rescaled to universal power law
behaviours.
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