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Abstract. We review here a series of experiments on the fragmentation instabili-
ties that a liquid drop undergoes as it falls inside a fluid with which it is miscible,
so called the solvent. Motivated by the original experiments initiated by Thomson
and Newall in 1885, we started to investigate this subject more than one decade
ago, encountering up to date a number of challenging problems in hydrodynam-
ical instabilities, complicated by the presence of transient interfaces between the
drop and the solvent. In particular, we have shown that when a drop of liquid
is deposited over the surface of the same liquid, it falls down inside the solvent
because the energy associated to its surface tension against air is instantaneously
converted into kinetic energy. As a consequence, a very fast fluid injection takes
place as the drop touches the free surface of the solvent and the drop enters inside
the solvent. Due to the hydrodynamical instabilities related to the large velocity
gradients, it develops into a ring that expands radially. The ring continues to
go downwards inside the solvent until it stops at a certain height due to viscous
dissipation. In the first stages of the ring expansion, a fluid membrane remains
attached to the ring, so-called “turban” for its shape, which is concave or con-
vex depending on the sign of the density difference between the drop and the
solvent. When a small density difference is introduced between the drop and the
solvent, the ring becomes unstable because of density gradients and it fragments
into smaller droplets. On their turn, the secondary droplets may undergo the same
instability and may fragment again, so that a cascade of fragmentation takes place.
If the density difference is positive, that is, the drop is heavier than the solvent,
the secondary droplets continue to go down deeper inside the solvent, until the
whole process is washed out by the slow diffusion of the concentration gradients.
When the density difference between the drop and the solvent is negative, then
the secondary droplets rise up to the free surface of the solvent, where they are
distorted by the equivalent of an impact with a rigid wall. Universal scaling laws
for the cascade of fragmentation and for the dynamical behavior of the drop have
been derived and accompany the experimental observations.

1 Introduction

More than a century after the first report by J.J. Thomson and H.F. Newall [1], the problems
related to the hydrodynamical instabilities of a drop falling in a miscible fluid are still challeng-
ing and have been recently reconsidered. A section devoted to this phenomenon can be found, for
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example, in the book of D’Arcy W. Thomson [2]. The complexity of the hydrodynamic process
arises from the simultaneous presence of two hydrodynamic instabilities, Kelvin-Helmoltz (KH)
and Rayleigh-Taylor (RT), coming from the presence of velocity and density gradients between
the drop and the solvent. Moreover, the hydrodynamical problem is complicated by the presence
of a transient interfaces between the drop and the solvent and the question arises about the
existence of dynamical interface which would appear between two miscible fluids. For instance,
the fact that the process of break-up is not, in general, observed for immiscible fluids still has
no clear explanation. Actually, a break-up into two fragments has been recently observed in one
experiment with two immiscible fluids [3], but this observation requires the drop being loaded
with some surfactant and travelling such a long distance as 2m. It is clear that surface tension
plays some important role and that, even in the case of miscible fluids, it is reasonable to ask
whether or not we should consider some sort of transient surface tension [4].
In the case of zero density difference between the drop and the solvent, that is the two are

made of the same fluid, we have shown that when the drop is deposited over the free surface
of the same liquid, it falls down inside the solvent because the energy associated to its surface
tension against air is instantaneously converted into kinetic energy [5]. As a consequence, a
very fast fluid injection takes place as the drop touches the free surface of the solvent and
enters inside the solvent. Due to the hydrodynamical instabilities related to the large velocity
gradients, it develops into a ring that expands radially. The ring continues to go downwards
inside the solvent until it stops at a certain height due to viscous dissipation. In the first stages
of the ring expansion, a fluid membrane remains attached to the ring, so-called “turban” for its
shape, which is concave or convex depending on the sign of the density difference ∆ρ between
the drop and the solvent. When ∆ρ is introduced, the ring becomes unstable because of density
gradients and it fragments into smaller droplets. On their turn, the secondary droplets may
undergo the same instability and may fragment again, so that a cascade of fragmentations
takes place. If the density difference is positive, that is, the drop is heavier than the solvent,
the secondary droplets continue to go down deeper inside the solvent, until the whole process
is washed out by the slow diffusion of the concentration gradients. We have shown that the
fragmentation process is ruled by two non dimensional numbers, the fragmentation number F
and the Schmidt number S [6,7] and displays fractal properties in the statistics of the drop
fragments [8]. When the density difference between the drop and the solvent is negative (the
drop is lighter than the solvent), then the secondary droplets rise up to the free surface of the
solvent [9], where they are distorted by the equivalent of an impact with a rigid wall. Universal
scaling laws for the cascade of fragmentation and for the dynamical behavior of the drop have
been derived and accompany the experimental observations.
The paper is organized as follows. Section 2 presents the experimental setup. Section 3 is

dedicated to the first stages of the drop evolution, with its transformation into a torus and
the associated scaling laws. The case of a positive density difference between the drop and the
solvent is discussed in section 4, where the non-dimensional numbers ruling the fragmentation
cascade are introduced. In section 5, the fractal properties of the fragmentation instability are
presented. Finally, section 6 is dedicated to the case of a negative density difference with the
inverse cascade of fragments rising up to the free surface of the solvent.

2 Experimental setup

A schematic drawing of the experiment is shown in figure 1. The setup consists of a glass cell
with a base of 10 × 10 cm2 and 40 cm high, mounted on a rigid metallic support. On the top
of the cell it is mounted a calibrated microsyringe that releases the drops. Drop volumes from
0.1 to 50µl are obtained by using Hamilton microsyringes covering different volume ranges,
so that the volume uncertainty is of the order of a few percents for all the volumes used. For
each volume range, the syringe needle has an edge with a circular section, the diameter of
which is sufficiently large to sustain a pending drop [12], with a corresponding Bond number
Bo = ρgr2/σ < 1, where ρ is the density of the drop, r its radius, g the acceleration of gravity
and σ the surface tension. Thus, the weight of the drop is balanced by the adhesion of the fluid
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Fig. 1. Experimental setup.

to the needle walls, so that we can consider that gravity is not playing a role in the first stages
of the process. Once the drop is formed at the edge of the needle, by means of a micrometric
translation stage, we deposit it with adiabatically zero velocity on the free surface of the solvent.
The drop is doped with a small amount of sodium fluorescein dye (10−8mol/l) and is visualized
by illuminating the cell with a collimated and expanded argon laser beam. Two CCD cameras
are used to register the drop, one camera recording the sideview and the other one recording,
from the bottom of the cell, the transverse section. The amount of fluorescein dye is sufficiently
low in order not to alter the fluid properties and the dimensions of the cell are large enough in
order not to influence the drop dynamics [13].

3 The drop injection and the ring formation

To study the early stages of the drop instability, we have focused on the case ∆ρ = 0, that is, the
drop and the solvent are made of the same fluid [5]. In such a case, there is no fragmentation since
this is ruled by the Rayleigh-Taylor instability arising from the density difference between the
drop and the surrounding fluid. The remaining mechanism for the drop instability is of Kelvin-
Helmoltz type, that is, the whole process is ruled by velocity gradients. Indeed, when the drop
enters inside the solvent, it acquires a high initial speed from the instantaneous conversion of
surface energy into kinetic energy. Because of the fast injection and velocity gradients, the fluid
jet enrolls onto itself giving rise to a vortex ring. The rotational motion of the fluid induces a
transverse component of velocity and the ring expands horizontally while travelling downwards.
Thus, the drop transforms from a spherical into a toroidal shape. In figure 2 we show a few
lateral images of a water drop entering inside water. The process of injection is very fast and the
CCD repetition rate (40ms) does not permit to follow it. In order to catch the essential features
of the process, we set the integration time of the CCD to the minimum available for our system,
that is 50µs, and we record images for different events of the drop injection, the initial time of
each record being different and hazardous at each shot. Then, we extract from the collection
of images four successive stages that we show in figure 2. We can see that the injection gives
rise to a rapid jet incoming from the point of contact between the drop and the solvent. The
drop fluid enters the solvent through the jet and rolls up into a vortex ring. Two-dimensional
experiments performed in a Hele-Shaw geometry have also revealed the vortical fluid motion
taking place inside the drop during the first stages of evolution [14].
When the kinetic energy is completely dissipated by viscous processes, the ring stops and

starts to fade away because of diffusion. We can use a simple dimensional argument to predict
the height h at which the ring will stop. By balancing the surface energy 4πσr2 and the kinetic
energy 4/3πr3ρv20 we obtain σr

2 = 1/6ρr3v20 , where σ is the surface tension of the drop against
air, r the initial drop radius, µ the viscosity of the surrounding fluid and ν = µ/ρ the kinematic

viscosity. Thus, the velocity v0 initially transferred to the drop is v0 =
√
6σ/ρr. Once acquired,
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Fig. 2. Experimental side views of the drop injection. The fluid is water into water and the drop
volume is 1µl. Top: four initial stages of the drop injection. Bottom: four successive stages. Top and
bottom images are separated by 20ms whereas successive images on each raw occur after a fraction
of ms [From [5]].

this velocity is dissipated by viscous processes that are accounted for by the Stokes law

v̇ = −γν
r2
v, (1)

where γ is a shape factor (γ = 6π for a rigid sphere) [10]. Integrating the Stokes law yields

v(t) = v0e
−γ ν

r2
t (2)

and the maximum height h reached by the drop is

h =

∫ ∞
0

v(t) dt =
v0r

2

γν
=
v0

γ
τν (3)

where τν = r
2/ν is the viscous time scale. Substituting the expression for v0 and considering

that r ∝ V 1/3, where V is the initial drop volume, h can be rewritten as

h =
1

γ

√
σ

ρν2
V 1/2 ∝ l−1/2ν r3/2 (4)

where we have included in γ all the geometric factors and we have defined the viscous length
scale

lν ≡ ρν
2

σ
. (5)

In order to test the scaling law predicted predicted by the above dimensional arguments, we have
performed several experiments by using mixtures of distilled water and Glycerol at different
concentrations. For each fluid mixture and initial drop volume, we register on a videorecorder
the entire process, from the drop injection until the ring stop and the onset of diffusion. The
lateral and transverse images are combined through a video mixer so that we can follow on the
same screen the vertical motion of the drop and the ring formation. By analyzing the video
tapes, we can catch the images corresponding to the ring stop. On these images, we measure the
vertical height h reached by the ring and its radius R (figure 3). R is measured as the average
between the inner and the outer radius of the annulus.

3.1 Scaling laws

In figure 4 we report the measured height h as a function of the initial drop volume V for
different fluid compositions, namely 0, 10, 20, 35 and 52% of Glycerol in water. For each fluid



New Trends, Dynamics and Scales in Pattern Formation 361

Fig. 3. Experimental images of the ring stop; left: trans-
verse view, right: lateral view. [From [5]].

Fig. 4. h as a function of the ini-
tial drop volume V for different fluid
compositions; empty circles: pure wa-
ter, stars: 10% Glycerol in water (Gly),
diamonds: 20% Gly, triangles: 35% Gly,
squares: 52% Gly, filled circles: pure
ethanol. [From [5]].

composition, lν = σ/ρν is evaluated by substituting for σ, ρ and ν the values tabulated in the
current literature [15]. By choosing a reference temperature of 20 ◦C, which is the room temper-
ature at which we perform the experiments, lν results to be equal to 72.4, 43.4, 24.9, 9.2, 2.2 ×
104 cm−1 for, respectively, 0, 10, 20, 35, 52% of Glycerol. The kinematic viscosity is, respectively,
ν = 1.0, 1.3, 1.7, 2.7, 5.3×10−2 cm2 s−1. The best fit lines are obtained by inserting into equation
(4) the above values for the fluid parameters and by taking γ = 15± 1 for the geometric factor.
To have a further verification of the h versus V scaling law, we have performed an experiment
by using ethanol as the fluid for the drop and the solvent. In this case, even though the viscosity
is lower than for water, we expect that the ring stops at a smaller h because the surface tension
has also been strongly reduced, thus reducing the initial speed transferred to the drop. The data
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Fig. 5. R as a function of the initial drop
volume V for different fluid compositions;
empty circles: pure water, stars: 10% Gly,
diamonds: 20% Gly, triangles: 35% Gly,
squares: 52% Gly. Solid lines have two
slopes, namely, 2/3 and 1/3. [From [5]].

do indeed scale as predicted by equation (4), once we set l−1ν = 12.5 × 104 cm−1, accordingly
to the values tabulated for ethanol.
For the same sets of experiments, we report in figure 5 the measured radius R as a function

of the initial drop volume V . Two distinct scaling regions can be observed, depending on the
volume and viscosity. For small volumes and large viscosities the exponent of the power law
fitting the data is close to 2/3 whereas for larger volumes and smaller viscosities data are fit by
a 1/3 exponent. Moreover, in this latter case R seems not to depend on the fluid parameters
but only on the initial drop volume. As it can be seen in figure 5, the 1/3 and 2/3 scalings
correspond to two asymptotic behaviors, the separation between them depending on the fluid
parameters. These two asymptotic behaviors can be explained by using dimensional arguments.
The drop injection gives rise to a vortical motion of the fluid and the vortex ring transfers part
of the initial velocity in the horizontal direction, thus giving rise to a transverse component of
velocity, v⊥. Once acquired, the horizontal velocity is dissipated by viscosity with a dissipation
rate 1/τν . Therefore, the final ring radius should behave as R � v⊥τν = v⊥r2 ν. The initial
acceleration of the vortical motion is given by a = v20/r; therefore the radial velocity of the
vortex built over a characteristic time τν is given by v⊥ � aτν = v20τν/r. It then results
v⊥ � σ/ρν and R � r2/lν = V 2/3/lν , which corresponds to the 2/3 scaling observed for small
volumes and large viscosities. On the other hand, if the viscosity is small or the volume is large
the rate of the vortex rotation is reduced. Indeed, in this case the boundary layer thickness
δ = r(Re)−1/2 = r[ν/(v0r)]1/2 shrinks and hence the transfer from the initial velocity v0 to
the effective vortical velocity veff implies a reduction factor δ/r, that is, veff = v0δ/r. Hence
v⊥ = v2effτδ/r where τδ = δ

2/ν is the viscous time along the length δ. It follows v⊥ = ν/r,
so that R � v⊥τν = r = V 1/3. Thus, the V 1/3 law describes the region characterized by small
viscosity and large volumes.

4 Positive density difference

4.1 The drop break-up

The break-up phenomena appear when there is a density difference ∆ρ between the drop and
the solvent. In this case, Rayleigh–Taylor (RT) and Kelvin-Helmoltz (KH) instabilities are
simultaneously present. However, we will see that, while KH remains dominant during the
initial stages of the drop evolution, RT takes place later, when the ring is well developed. It
is at this point that, because of the RT mechanism, initially small undulations start to be
amplified leading to the fragmentation of the ring. The fragmentation process was first studied
for ∆ρ > 0, with different fluid parameters ∆ρ/µ and different drop volumes V [6,7].
In a first set of experiments, to observe conveniently the initial stages of the process, the drop

evolution is slowed down by playing on the quantity ∆ρ/µ. A drop of 90% Glycerol and 10%
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Fig. 6. Evolution of a falling drop with r = 0.29 cm and ∆ρ = 0.0789 g/cm3. (a)–(f) Sequence of lateral
views taken at the following positions from the free surface and times from the deposition: a) 2.0 cm,
1.05 s; b) 6.0 cm, 3.03 s; c) 8.0 cm, 4.0 s; d) 10.0 cm, 5.2 s; e) 13.0 cm, 7.34 s; f) 16.0 cm, 10.0 s. Panel
e) shows the appearance of the turban instability and panel f) shows the onset of the R-T instability.
[From [6]].

water with a volume of 1 µl and seeded with carbon particles (size ∼ 70µm) is made to fall in
solvent of 60% Glycerol and 40% water. The falling drop generates growing vorticity and shear
at the interface between the two fluids. Thus, the drop transforms into a ring shape leaving
behind a concave membrane attached to the torus to form a turban. This turban instability is
evident in figure 6. We will see in the following that the turban instability takes place also in
the case of ∆ρ > 0, leaving behind the drop a convex, instead of a concave, membrane.
Then, the drop composition of 40% Glycerol, 60% water and the solvent composition of

25% Glycerol, 75% water were chosen and the drop volume was varied from 1 to 24 µl. Typical
experimental pictures of bottom views of multiple fragments after the first break up are shown
in figure 7. Experimental side views of successive multiple fragmentations are shown in figure
8. The cascade of fragmentations as seen in figure 8 stops after three steps, when the radius
of the tertiary droplets has become so small that diffusion sets in and takes over the process.
A bounded 2D version of the drop fragmentation was later explored in Pamplona by Carlos
Perez and colleagues, uncovering an interesting phenomenology [14], especially confirming the
vortical motion of the fluid during the first stages of the drop evolution.

4.2 Non-dimensional numbers

The drop break-up and its disappearance by diffusion are ruled by the non-dimensional number
F . This is expressed as the ratio of the two characteristic times of the drop evolution. The
falling drop behaves in such a way that the downward force due to gravity is proportional to
the density difference ∆ρ between the two fluids. After a transient regime, an equilibration time
τ ′ = ρr2/µ (where ρ is the drop density, r the drop radius and µ the surrounding fluid viscosity)
is reached, when the gravity force is compensated by the Stokes force, Fs = −γµrv, with γ a
shape factor (γ = 6π for a rigid sphere). Thus, in the sedimentation regime, the asymptotic
velocity v∞ = g∆ρr2/γµ is reached.
Therefore, the fragmentation of a drop falling with the asymptotic velocity implies the onset

of a circular velocity, and this requires at least a time τ1 corresponding to the transfer of v∞
across the drop radius, that is, τ1 = r/v∞ ∼ µ/∆ρgr, where we have neglected the constant
geometrical factor γ. Such a process is counteracted by diffusion, which takes place over the

(a) (b) (c) (d) (e)

Fig. 7. Experimental snapshots showing examples of multiple fragments after the first break-up of the
torus into: a) three, b) four, c) five, d) six, and e) seven fragments. [From [7]].
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Fig. 8. Experimental side views of the drop falling
in a lighter solvent; a) the drop, initially spherical,
has become a torus; some regions with greater den-
sity give rise to successive fragmentations, b) two
or c) six, depending on the fluid parameters. In d),
the six secondary droplets of panel c) split again
during the last stage of fragmentation. [From [8]].

Fig. 9. Log-log plot of V/D versus ∆ρ/µ for differ-
ent nine experimental situations. The confidence line
corresponds to Fc = g(∆ρV/µD)c = (2.8±0.1)×105.
[From [6]].

time τ2 = r
2/D. The fragmentation then stops at a radius where τ1 becomes longer than the

diffusion time. The Fragmentation number F is thus defined as [6]

F =
τ2

τ1
= g
∆ρ

µ

V

D
(6)

and fragmentation takes place when F is greater than Fc, the critical Fragmentation number.
When initial drops with F > Fc undergo fragmentation, then the daughter drops may or not
fragment again, depending if their volume is such that F is greater or smaller than Fc. Plotting
V/D against ∆ρ/µ as shown in figure 6, Fc was measured to be (2.8 ± 0.1) × 105, as derived
from the boundary line distinguishing between the break-up and non break-up of the torus
developing from drops with various fluid compositions [6].
F is found to be independent of the nature of the two miscible fluids. However, it was

observed that within the τ1 and τ2 interval, there is a break up time τbu for the first fragmenta-
tion to take place [7]. Two forces, namely the gravity and the viscous drag, act on the spherical
drop falling in a quiescent liquid. The net force is given by the sum of the buoyancy force,
Fb ∝ ∆ρV g, and the drag term due to the Stokes force, Fs ∝ µrv. At large times the drop
reaches the sedimentation velocity v∞ ∝ ∆ρgr2/µ. The third characteristic time of the process
is the viscous time, τν = r

2/ν = ρr2/µ. Depending on the fluid parameters, τν can be larger
or smaller of the first break-up time τbu, hence determining the extension of the fragmentation



New Trends, Dynamics and Scales in Pattern Formation 365

Fig. 10. F − S diagram showing the number of fragments along the vertical line of F -axis. I to VIII
refer to different fluid compositions [7]. The arrow denotes Fc/g. [From [7]].

regime. Indeed, if τ1 = r/v∞, which is the minimum time for the formation of the vortex ring,
is much larger than τν , then the ring disappears by diffusion, while for τν > τ1 the torus has
enough time to experience the local perturbations coming from the increasing velocity and thus
becomes unstable. As a consequence, the ratio [7]

T =
τ1

τν
=

µ2

gρ∆ρV
(7)

accounts for an increasing number of fragments associated with the first break up when τν is
increased. By relating the diffusion time τ2 to the viscous time τν , the ratio

S =
τ2

τν
=
µ

ρD
(8)

can be defined as the second characteristic non dimensional number of the problem. This
coincide with the Schmidt number, which depends only on the fluid properties [7]. One can
control the fluid parameters in such a way that when τν is increased and S decreased, then the
number of the horizontal fragments would increase. A F − S diagram showing the number of
fragments obtained for different fluid compositions is displayed in figure 10.

5 Fractal properties of the fragmentation instability

In order to understand the self-similar process of the drop fragmentation, the same experimental
set up as in figure 1 was used, but the solvent is illuminated horizontally with a collimated argon
ion laser beam shaped as a thin lamina (500µm thickness) by means of a cylindrical lens [8].
By changing the height of the lamina, the drops at different times and heights were followed.
Beneath the cell is placed a plane mirror at an angle of 45◦, that reflects the fluorescence induced
by the passage of the drop through the two-dimensional slice of light. The drop break up at
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Fig. 11. Measured drop height as a function of the arrival time t, for an initial drop volume of 2µl.
The two vertical dashed lines mark the three regions identified as: I the first break-up region, ruled by
the Fragmentation number F , II the fragmentation region, whose extension depends on the Schmidt
number S, and III the region of pure diffusion. [From [8]].

Fig. 12. Scaling exponents γI , γII , and γIII of the height vs time h ∼ tγ for the three different regions,
respectively, as a function of the initial drop volume. The points are experimental data and the solid
lines are best fits with γI ∼ V 0.50±0.02 for the onset of the turban instability, γII ∼ V 0.00±0.02 for
the fragmentation region and γIII ∼ V 0.22±0.02 for the onset of diffusion. The second region shows
a universal behaviour with an exponent γII = 0.34 ± 0.02 independent from the initial drop volume.
[From [8]].

different cell heights is ruled by the fluid parameters and the cell is large enough to exclude the
influence of the lateral boundaries. Using different drop volumes, a series of sectional images
ranging from 64× 64 up to 320× 320 pixels are recorded at ten different successive heights and
times. Each digitized image contained levels of the normalized intensity varying from 0 to 255.

Using a drop of volume 2µl, the height h(t) versus time was plotted, as shown in figure 11.
Three distinct regions can be distinguished, namely: region I indicates the initial drop fall, region
II shows the fragmentation process and region III corresponds to the onset of diffusing droplets.
For the three regions we formulate a power law as h ∼ tγi with γi different exponents. By plotting
the scaling exponents versus the drop volume as shown in figure 12, it can be deduced that γi ∼
V x as follows: in region I, we have a relation of γI ∼ V 0.50±0.02, in region II, γII ∼ V 0.00±0.02
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Fig. 13. Multifractal properties of the falling drop. Plots of a) Dq versus q and b) f(α) versus α for
different heights, h = 12, 22, 27, 32, 47mm from top to bottom. Plots of c) Dq versus q and d) f(α)
versus α for different heights, h = 80, 110, 140, 170, 260mm from bottom to top. The upper part, a) and
b), shows the regime of increasing fractalization (instabilities prevailing over diffusion), the lower part,
c) and d), shows the decreasing fractalization (diffusion overcoming instabilities). [From [8]].

while in region III, γIII ∼ V 0.22±0.02. The second region, which is the fragmentation region,
shows a universal behaviour with an exponent γII = 0.34 ± 0.02 independent from the initial
drop volume.

Moreover, with the recorded digitized images and by using a box counting algorithm [17],
we have computed the fractal dimension D0 of the space occupied by the drop. The image
space is partitioned into equally sized cubes of side ε. If N(ε) is the number of cubes required
to cover the space, the Renyi dimension can be calculated according to

Dq = limε→0
1

q − 1
ln
∑N(ε)
i=1 p

q
i

limε
(9)

where pi is the image probability in the i-th box defined as follows: in the discrete frame
processing, we split the N × N pixels frame into m × m pixels boxes, where m specifies the
discrete ε value selected. If we call x, y the pixel coordinates, then the i-th box will span the
coordinates from xi to xi +m and yi to yi +m. Calling Ixy the intensity recorded at the pixel
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(x, y), the total signal is given by

It =
N∑

x,y=1

Ixy (10)

whereas the local signal in the i-th box is given by

Ii =

xi+m∑
x=xi

yi+m∑
y=yi

Ixy. (11)

With this in mind we define as the image probability of the i-th box the quantity

pi =
Ii

It
. (12)

According to equation (9), if log-log plots of [
∑N(ε)
i=1 p

q
i ]
1/(q−1) versus ε are plotted, the slopes

of the linear regions correspond to Dq [18]. Dq curves can be derived for different drops at
different heights (such as h = 12, 22, 27, 32 and 47mm) in the fractalisation region and for the
region of diffusion (h = 80, 110, 140, 170 and 260mm) where fractalisation is decreasing. From
the Dq curves, the f(α) curves were calculated by the Legendre transforms [19] with d = 2 for
two-dimensional sections of the flow:

α =
d

dq
[(q − 1)Dq] + 1− d f(α) = q(α− 1 + d)− (q − 1)Dq. (13)

The function f(α) describes how densely a singularity of strength α is distributed over the
analyzed set. Thus, f(α) can also be seen as the fractal dimension of the subset over which
the singularities scale as α. A set characterized by a spectrum of these dimensions is called
multifractal since it can be thought of as constituted by many fractal subsets [20]. In figure 13
we report the f(α) versus α curves as it were done [8] for different height regions, h from 12
to 47mm and h from 80 to 260mm, of the drop sections and for a drop volume of 4µl. From
these curves, the fractal dimension D0 of each image was deduced from the maximum of f(α)
versus α plot.
A plot of the measured fractal dimension D0 as a function of the cell height h is shown

in figure 14. Here, it is observed that D0 = 2 when the drop is whole up to torus, whereas
at the onset of fractalisation D0 reduces to 1.3. Once the fractalisation is over and inhibited
by diffusion, a reverse process, leading to the restoration of the dimension D0 = 2, takes
place. This reverse process for height inside the cell, h from 80 to 260mm, is slow over a large
range. Similar results are obtained for different drop volumes. Thus, the drop fragmentation
is a transient fractal taking place before the establishment of pure mixing between drop and
solvent. Inside the fractalisation region, the fragmentation cascade shows the generic properties
of self-similar processes [8].

6 Negative density difference

We have studied the drop fragmentation instabilities in the case ∆ρ < 0, that is, when the drop
is lighter than the solvent [9]. Different fluid compositions were tested, namely the solvent was
made up of distilled and purified water doped at 10, 15, 25% Glycerol and the drop was made
up of distilled and purified water with a Glycerol concentration varying in between 0 and 25%.
A typical behavior observed for a V = 2µl drop doped at 15% Glycerol and falling in a 25%
Glycerol doped solvent (∆ρ = 0.053 g/cm

3
) is shown in figure 15. We can distinguish the fast

injection of the drop, the ring formation, its undulation and the subsequent fragmentation into
four droplets, then rising-up towards the free surface of the solvent. It is worth to note that,
when the ring expands, it remains attached to a convex membrane. In the case of positive ∆ρ
the same phenomenon was observed and called turban instability [6]. In that case the curvature
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Fig. 14. Measured fractal dimension D0 as a function of the cell height h. The initial drop, the
torus and the final stages of diffusion have a dimension of 2. The dip of the curve corresponds to the
fractalization region. [From [8]].

of the membrane was in the opposite direction with respect to the present case. Note that the
turban instability has been observed also in the case of immiscible fluids [16].

We have performed several experiments by changing the drop volume V and the density
difference ∆ρ. For each set of experiments we have recorded several movies following the drop
evolution and for each recorded movie we have performed the following processing. We have
binarized all the frames by choosing a unique threshold intensity and by checking that this one
minimizes the discontinuities between each frame and its successive. Then, on each frame we
identify the center of mass of the drop, we record its coordinates and we follow its trajectory
until the drop stops its descent and starts to rise up breaking into fragments. At this point,
we choose only one fragment and follow its motion by recording the coordinates of its center
of mass. The evolution of the longitudinal coordinate, h, of the center of mass is plotted as a
function of time for a fixed drop volume, V = 4µl, and for different ∆ρ (figure 16) and for a

fixed ∆ρ = 0.04505 g/cm
3
and different drop volumes, V = 2, 4, 6, 8µl (figure 17).

From figure 16 and 17, we can see that, once the drop has evolved into a vortex ring, it
stops at a minimum height, hmin, which is mainly ruled by the initial drop volume, V . On
the other hand, when fragmentation takes place, the rise-up time for the secondary droplets
mainly depends on the density difference, ∆ρ, eventually going to infinity for ∆ρ = 0. At small
∆ρ the rise-up time is very long, while it shortens as ∆ρ increases. The drop injection takes
place even in the absence of density difference because, the two fluids being miscible, there is
an “instantaneous” conversion of the energy associated to surface tension into kinetic energy.
Then, viscous dissipation slows down the motion of the drop, which asymptotically reaches the
minimum height hmin.

To describe the dynamical behavior of the drop we have developed a simple model that
takes into accounts buoyancy and viscous dissipation. The equation of motion reads

dv

dt
=
g∆ρ

ρ
− γ ν
r2
v, (14)

with r = κ 3
√
V and γ, κ geometrical factors (γ = 6π and κ = 0.62 for a rigid sphere [10]). The

initial condition is given by the injection of the drop, v(t = 0) = v0, where v0 comes from the
conversion of the drop surface tension into kinetic translational and rotational energy

1

2
mv20 +

1

2
Iω2 = 4πσr2, (15)

with I = αmr2 the inertial momentum of the drop and ω = βv0/r its frequency of rotation.
If all the rotation is converted into translation, i.e., there is no sliding, then β = 1, otherwise
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a b c

d e f

g h i
Fig. 15. Side views of the drop falling in a heavier solvent; a) the drop injection (t = 0.08 s), b) c)
the ring formation (t = 0.20, 0.32 s), d) the development of the turban (t = 0.44 s), e) f) the onset of
fragmentation (t = 0.56, 0.68 s), g) h) i) the rise up of the fragments (t = 0.80, 0.92, 1.04 s). [From [9]].
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Fig. 16. Drop height h as a function of time for V = 4µl; ∆ρ = a) 0.01325, b) 0.0265, c) 0.03975 and
d) 0.04505 g/cm3.
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Fig. 17. Drop height h as a function of time for ∆ρ = 0.04505 g/cm3; V = a) 2, b) 4, c) 6 and d) 8µl.

β > 1. We obtain for the initial velocity of the drop

v0 = −
√

6σ

(1 + αβ2)ρr
. (16)

By defining the viscous time, τν = r
2/γν, we derive from equation (14) the drop asymptotic

velocity, v∞, corresponding to dv/dt = 0,

v∞ =
∆ρ

ρ
gτν =

g∆ρ

µ
r2, (17)

which is the same expression previously derived for positive ∆ρ. Integrating equation (14) from
v = v0 to v = 0 we obtain the drop fall-down time, τd, which is the time taken by the drop to
stop

τd = τν ln

(
1− v0
v∞

)
, (18)



372 The European Physical Journal Special Topics

0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.1

0.2

0.3

0.4

0.5

3
0.00

0.0

3
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.6

b)a)

Fig. 18. a) Drop fall-down time τd and b) rise-up time τu as a function of ∆ρ; V = 2µl circles, V = 4µl
triangles, V = 6µl stars, V = 8µl crosses. Lines are the theoretical curves for V = 5µl.

and the minimum height, hmin, reached by the drop before rising-up

hmin = v∞τd + v0τν . (19)

As for the fragment rise-up time τu, if t� τν it is simply given by

τu = −hmin
v∞

=

∣∣∣∣ v0v∞
∣∣∣∣ τν − τd, (20)

so that the total elapsed time is τT = |v0/v∞|τν . However, as we can see from figure 15, the
rising-up droplets are fragments of the initial drop, so that the asymptotic velocity to be used
here has the same expression as before, equation (17), but with a volume V/N that is a fraction
of the initial one, where N is the number of fragments. If we take into account this correction,
we have that

τu = (τT − τd)N2/3. (21)

We show in figure 18(a) and figure 18(b) the drop fall-down time τd, and, respectively, the
rise-up time τu, as a function of ∆ρ. From now on, we fix the parameters of the model to
αβ2 = 4, γ = 6.67 and κ = 0.56. We plot in figure 18(a) the theoretical prediction for τd, as

in equation (18). This curve fits quite well the data for ∆ρ > 0.02g/cm
3
but presents large

deviations for lower values of ∆ρ. Indeed, when ∆ρ → 0 the logarithmic divergence does not
take into account the dissipation due to the increasing radius of the vortex ring. To include
such an effect a more refined model should be developed in order to describe the dynamics of
the ring formation. As for the rise-up time τu, we have plotted in figure 18(b) the experimental
data by normalizing each value at N2/3. By using the expression in equation (20), we obtain
a good fit of all the data. In figure 18(b) we report the curve for V = 5µl, the curves for the
other volumes being close to this one.
The minimum height hmin reached by the drop before rising-up is plotted in figure 19 as a

function of ∆ρ, together with the theoretical curves, equation (19), for V = 2, 4, 6, 8µl. We can
see that the theoretical curves are in good agreement with the experimental data. Note that,
in the limit of the experimental error, for ∆ρ = 0 we obtain the h ∝ V 1

2 scaling, in agreement
with the previously reported law [5].
Finally, we rescale all the h− t data by hmin and τT , and we plot the reduced profiles h(t)

in figure 20. We can see that all the drops approximately follow the same evolution law. The
early stages of the drop injection are very similar to those observed at ∆ρ = 0: the drop falls
very fast inside the solvent and develops a ring. Then, the ring stops because of dissipation of
the initial impulsion. At this point, the drop has reached the minimum height hmin, where a
velocity reversal occurs and where a new instability takes place leading to the fragmentation
of the ring into smaller droplets. Being ∆ρ < 0, the secondary droplets rise-up towards the
surface because of buoyancy. This dynamical regime corresponds to the linear portions of the
h− t profiles just after hmin. Viscous dissipation slows down the motion of the fragments, but
in this dynamical regime buoyancy is dominant.
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At later times, when fragments approach the surface, we observe deviations from the linear
dependence of h(t). Indeed, droplets feel the presence of the boundary and behave as secondary
vortex rings, each one colliding over a wall with a longitudinal velocity component [21]. To
describe the interaction of the vortex ring with the wall we can replace the wall by the specular
image of the vortex ring, this one having opposite circulation with respect to the incoming
ring. Because of this interaction, the vortex ring expands and slows down, until, at later times,
diffusion takes over the whole process.

7 Conclusions

In summary, the physics of liquid drops needs to be unveiled in order to have more relevant
practical applications in agriculture and industry [22]. The experimental characterisation of the
dynamical and statistical features of a drop falling in a miscible fluid can serve this purpose.
The process can be associated with three dynamical regions, one corresponding to the onset
of the torus and the first hydrodynamic instabilities, the other characterised by the successive
fragmentation of the initial drop into smaller droplets and the last one dominated by diffusion,
in which the droplets mix with the solvent without undergoing further fragmentations. The drop
dynamics is ruled by three characteristic times through which two non-dimensional numbers,
namely the Fragmentation number F and the Schmidt number S, were derived. While the first
region of the drop becoming a torus is ruled by F , the fragmentation region of successive break-
up is determined by S. In order to understand the development of the torus at the early stages of
the drop before rupture, further experiments were performed on the role of the interfacial tension
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and its dissipation energy. The initial stage of the drop injection was found to be independent
of the density difference between the drop and the solvent being either positive or negative. In
the fragmentation region, the fractalization can be attributed to a multifractal structure of the
droplet projections at different height. By using scaling laws on the drop volume V and various
height h reached before the formation of the torus and also during the fragmentation process,
h and V can be rescaled to universal power law behaviours.
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