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We report on theoretical analysis of high frequency conductivity in carbon nanotubes.
Using the kinetic equation with constant relaxation time, an analytical expression for
the complex conductivity is obtained. The real part of the complex conductivity
is initially negative at zero frequency and become more negative with increasing
frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag
CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for
terahertz gain without the formation of current instabilities induced by negative dc
conductivity. We noted that due to the high density of states of conduction electrons
in metallic zigzag carbon nanotubes and the specific dispersion law inherent in
hexagonal crystalline structure result in a uniquely high frequency conductivity than
the corresponding values for metallic armchair carbon nanotubes. We suggest that
this phenomenon can be used to suppress current instabilities that are normally
associated with a negative dc differential conductivity. Copyright 2012 Author(s). This
article is distributed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4771677]

I. INTRODUCTION

The nonlinear dynamics of electrons in carbon nanotubes (CNs) under the action of an external
electric field has been the subject of intense research.1–5 Tans et. al.1 and Bezryadin et. al.2 have
measured the current-voltage characteristics for single-wall CNs at low temperatures, i.e when
kB T < EC , �E , where kB is Boltzmann constant, T is the temperature, εC is the charging energy.
The energy level spacing �E is given by �E = π�νF/L where νF is the Fermi velocity and L
is the carbon nanotube length.4 At this low temperatures the current is produced by the electrons
tunneling through the CNs in the presence of the Coulomb blockade induced by long-range Coulomb
interactions.4 Nonlinear coherent transport through doped nanotube junctions was considered in
Ref. 3 and it also showed the possibility of negative differential conductivity (NDC) for tunneling
electrons. Using semiclassical Boltzmanns equation, Maksimenko et. al.4 found that the dc current-
voltage characteristics of CNs biased by a constant electric field along the axis of undoped CNTs
at room temperatures (kB T > EC , �E) showed NDC up to frequencies on the order of the Bloch
frequency. Here the current density is produced by conduction electrons with energies below the
energy of the interband transitions and move in the crystalline field like free quasiparticles, with
a modified dispersion law allowing the use of quasiclassical approach to describe the electron
motion. However, existing theories on Bloch oscillations have been observed in semiconductor
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superlattices.6, 7 These Bloch oscillations are caused by Bragg reflection of electrons at the edges of
the Brillouin regions and the occurrence of Bloch oscillations are concluded from the observation
of NDC. Also see.8–12

Like Maksimenko et. al.,4 quantum phenomena like interband transitions, quantum mechanical
corrections to intraband motion as well as Coulomb interactions will be excluded from this report.
Our report will be quasiclassical with an extension to the high-frequency electric field in CNs by
following the approach of Ktitorov et. al.8

II. THEORETICAL MODEL

Following,8 the high-frequency differential conductivity is derived starting with the Boltzmann
kinetic equation. For simplicity, we shall ignore the difference between the energy - momentum
relaxation rates and assume a common relaxation time τ for both processes. The equations of the
symmetric fs and antisymmetric fa parts of the distribution functions are

∂ fs

∂t
+ eE(t)

∂ fa

∂kx
= − [ fs − f0(p)]

τ
. (1)

∂ fa

∂t
+ eE(t)

∂ fa

∂kx
= − fa

τ
. (2)

Writing the distribution functions in Fourier series as

f 1
a = �pϕ

n∑
s=1

δ(pϕ − s�pϕ)
∑
r �=0

frseibrpz �1
a, (3)

f 1
s = �pϕ

n∑
s=1

δ(pϕ − s�pϕ)
∑
r �=0

frseibrpz �1
s , (4)

f0(p) = �pϕ

n∑
s=1

δ(pϕ − s�pϕ)
∑
r �=0

frseibrpz , (5)

where e is the electron charge, f0(p) is the equilibrium distribution function, δ(x) is the Dirac delta
function, r is summation over the stark component, frs is the coefficient of the Fourier series and �1

s
and �1

a are the factors by which the Fourier transform of the symmetric f 1
s and antisymmetric f 1

a
parts of the distribution functions are different from the equilibrium distribution function f0(p, t) and
τ e = τ p = τ is the relaxation time. The electric field E is applied along CNs axis and the equilibrium
distribution function can be expanded in the analogous series with the coefficients frs expressed as

frs = a

2π

∫ 2π
a

0

e−ibrpz

1 + exp(Es(pz)/kB T )
dpz . (6)

Similarly, expanding Es(pz)/γ0 in Fourier series with coefficients Ers defined as

Ers = a

2π

∫ 2π
a

0
Es(pz)e

−iarpz dpz

The investigation is done within the semiclassical approximation in which conduction electrons
with energy below the energy of the interband transitions move in the crystalline lattice like free quasi-
particles with dispersion law extracted from quantum theory.4 Taking into account the hexagonal
crystalline structure of a rolled graphene in a form of CNT and using the tight binding approximation,
the energy dispersion for zigzag and armchair CNTs for which the Fermi energy EF = 0, are expressed
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as in Eqs. (7) and (8), respectively4, 14, 15

Es(s�pϕ, pz) ≡ Es(pz)

= ±γ0

[
1 + 4cos(apz)cos

(
a√
3

s�pϕ

)

+4cos2

(
a√
3

s�pϕ

)]1/2
(7)

and

Es(s�pϕ, pz) ≡ Es(pz)

= ±γ0

[
1 + 4cos(as�pϕ)cos

(
a√
3

pz

)

+4cos2

(
a√
3

pz

)]1/2
(8)

where γ 0 ∼ 3.0 eV is the overlapping integral, pz is the axial component of quasi-momentum,
�pϕ is transverse quasi-momentum level spacing and s is an integer. The expression for a in
Eqns (7) and (8) is given as a = 3b/2�, b = 0.142 nm is the C-C bond length. The “−” and “+” signs
correspond to the valence and conduction bands respectively. Due to the transverse quantization of
the quasi-momentum, its transverse component can take n discrete values, pϕ = s�pϕ = (π

√
3s)an

(s = 1, . . . , n). Unlike transverse quasi-momentum pϕ , the axial quasi momentum is assumed to
vary continuously within the range 0 ≤ pz ≤ 2π /a, which corresponds to the model of infinitely long
of CNT (L = ∞).

The quasiclassical velocity νz(pz, s�pϕ) of an electron moving along the CNT axis is given by
the expression

vz(pz, s�, pϕ) = ∂Es(pz)

∂pz
= γ0

∑
r �=0

iarErseibrpz . (9)

The surface current density is also defined by the integral over the first Brillouin zone as:

jz = 2e

(2π�)2

∫ ∫
f (p)vz(p)d2 p.

or

jz = 2e

(2π�)2

n∑
s=1

∫ 2π
a

0
f (pz, s�pϕ,�υ(t))vz(pz, s�pϕ)dpz . (10)

By linearizing Eqs. (3)–(5) with the perturbations fs = f 0
s + f 1

s exp(−iωt), fa = f 0
a

+ f 1
a exp(−iωt) and E = E0 + E1exp(−iωt) and substituting into Eqn (1) and (2) we obtain the

high-frequency conductivity as:

σz(ω) = σ0

∑
r=1

r2

[
1 − iωτ − (rωBτ )2

(r2ω2
B − ω2)τ 2 + 1 − 2iωτ

]

×
n∑

s=1

frsεrs . (11)

This is similar to Ref. 13. Where

σ0 = 4e2γ0

√
3

n�2

σ0(0)

(rωBτ )2 + 1
(12)

is the low-filed dc conductivity. We take � = 1 and ωB = eaE0/
√

3 for armchair and ωB = eaE0 for
zigzag CNs.
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FIG. 1. Real (red) and imaginary (blue) parts of conductivity for armchair CNTs for ωBτ = 5.

III. RESULTS, DISCUSSION AND CONCLUSION

Using quasiclassical approach, we consider the dynamics of an electron transport in a CNs
simultaneously exposed to both constant (dc) and ac electric fields. An analytical expression for the
complex conductivity is obtained. The nonlinearity is analyzed basically on the dependence of the
complex high frequency conductivity σ (ω)/σ (0) on the dimensionless frequency ω/ωB.

The high-frequency conductivity obtained via the calculation of Eq. (11) is presented in
Figures 1 and 2 for metallic zigzag CNT (9, 0) and metallic armchair CNT (6, 6) respectively.
We noted that whenω → 0, Eq. (11) reduces to

σz(ω) → σd ≡ d

E0
(σ0 E0)

= σ0(0)
∑
r=1

r2

[
(rωBτ )2 − 1

[r2ω2
B + 1]2

] n∑
s=1

frsεrs .

where σ d is the differential conductivity; for (ωB)2 > 1, σ d < 0. We observed that the real part of
the complex conductivity is negative in the frequency interval from ω = 0 to ω ∼ ωB for metallic
zigzag CNs and then turning positive (resonance enhancement) at ω ∼ ωB, whereas for the metallic
armchair CNs resonance enhancement occurs at ω < ωB. This resonance enhancement is indicative
for terahertz gain without the formation of current instabilities induced by negative dc conductivity.
For small values of n the magnitudes of ω/ωB and σ z(ω)/σ (0) for the metallic armchair CNs turn
out to be less than for metallic zigzag CNs with similar radius by a factor of approximately 2. See
Figures 1 and 2. We noted that because of the high density of states of conduction electrons in metallic
zigzag CNTs (9,0) and the specific dispersion law inherent in hexagonal crystalline structure result
in a uniquely high frequency conductivity than the corresponding values for metallic armchair
CNTs (6,6).

In conclusion, we have studied electron transport properties in carbon nanotubes. Using the
kinetic equation with constant relaxation time, an analytical expression for the complex conduc-
tivity is obtained. The real part of the complex conductivity is initially negative at zero frequency
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FIG. 2. Real (red) and imaginary (blue) parts of conductivity for zigzag CNTs for ωBτ = 5.

and become more negative with increasing frequency, until it reaches a resonance minimum at
ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This negative-conductivity reso-
nance close to the Bloch frequency makes a metallic zigzag CNs operating in this range an attractive
gain medium for an active Bloch oscillator than the metallic armchair CNs.
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