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Abstract

High frequency conductivity of hot electrons in an undoped single walled

achiral carbon nanotubes (CNTs) under the influence of ac-dc driven fields

is considered. We investigated semiclassically by solving the Boltzmann’s

transport equation with and without the presence of the hot electrons source

to derive the current densities. Plots of the normalized current density versus

frequency of ac-field reveal an increase in both the minimum and maximum

peaks of normalized current density at lower frequencies as a result of a strong

enough injection of hot electrons . The applied ac-field plays twofold role of

suppressing the space-charge instability in CNT and simultaneously pumping

an energy for lower frequency generation and amplification of THz radiations

which have enormous promising applications in very different areas of science

and technology.
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Introduction

Carbon nanotubes (CNTs) [1, 2, 3] have been the subject of intense re-

search [4]-[18], since discovery in 1991 by the Japanese scientist Sumio Iijima.

Their unique structures, fascinating electronic, magnetic and transport prop-

erties have sparked the interest and imagination of researchers worldwide [19].

These quasi-one-dimensional monomolecular nanostructural materials have

a wide variety of possible applications [20]-[22]. Research in hot electrons,

like any field in semiconductor research, has received a great deal of atten-

tion since the arrival of the transistor in 1947 [23]. Recently, it has become

possible to fabricate semiconductor devices with submicron dimensions. The

miniaturization of devices has led to high field well outside the linear response

region, where Ohm’s law holds for any reasonable voltage signal [24]. The

physical understanding of the microscopic processes which underlie the oper-

ations of such devices at high electric fields is provided by research into hot

electron phenomena [25]. Whereas, there are several reports on hot electrons

generation in CNTs [26, 27, 28, 29], the reports on high frequency conduc-

tivity of hot electrons in CNTs are limited. Thus, in this paper, we present

a theoretical framework investigations of high frequency conductivity of hot

electrons in (3, 0) zigzag (zz) CNT and (3, 3) armchair (ac) The Boltzmann

transport equation is solved in the framework of momentum-independent re-

laxation time using the semiclassical approach to obtain current density for

each achiral CNTs. We probe the behavior of the electric current density

of the CNTs as a function of the frequency of ac field with and without the

axial injection of the hot electrons.
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Theory

If a dc field Ez is applied along a z− axis of an undoped single-wall car-

bon nanotube, electrons begin to move in accordance with the semiclassical

Newtons law (neglecting scattering) [30]

dPz
dt

= eEz (1)

where Pz and e are the axial component of the quasimomentum and the

electronic charge of the propagating electrons respectively. For a CNT, If

energy level spacing ∆ε ( ∆ε = πh̄VF/L, h̄ = h/2π, h is Planck constant, VF

is Fermi velocity and L is the length of the nanotube) is large enough and the

scattering rate v is small such that ∆ε >> aeEz and hv < aeEz (zz−CNT ),

and ∆ε >> a√
3
aEz hv <

a√
3
aEz, (ac − CNT ), then the electrons oscillate

inside the lower level with so-called Bloch frequency Ω given by [31]:

Ωzz =
aeEz
h̄

(2)

Ωac =
aeEz√

3h̄
(3)

for zz−CNT and ac−CNT respectively. Here, a is the lattice constant of

the CNT. The investigation is done within the semiclassical approximation

in which the motion of the π-electrons are considered as classical motion

of free quasiparticles in the field of the crystalline lattice with dispersion

law extracted from the quantum theory. Taking into account the hexagonal

crystalline structure of a rolled graphene in a form of CNTs and using the

tight binding approximation, the energies for zz−CNT and ac−CNT are
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expressed as in equations (4) and (5), respectively [31]

ε(s∆pφ, pz) ≡ εs(pz) =

± γ0

√
1 + 4cos(apz)cos(

a√
3
s∆pφ) + 4cos2(

a√
3
s∆pφ) (4)

ε(s∆pφ, pz) ≡ εs(pz) =

± γ0

√
1 + 4cos(as∆pφ)cos(

a√
3
pz) + 4cos2(

a√
3
pz) (5)

where γ0 ≈ 3.0eV is the overlapping integral, pz is the axial component of

quasimomemtum. ∆pφ is transverse quasimomentum level spacing and s is

an integer. The expression for lattice constant a in equations (4) and (5) is

given by

a =
3ac−c

2h̄
(6)

where a(c−c) = 0.142nm is the C-C bond length. The − and + signs corre-

spond to the valence and conduction bands respectively. Due to the trans-

verse quantization of the quasimomentum P , its transverse component pφ

can take n discrete values,

pφ = s∆pφ =
π
√

3s

an
(s = 1, ...., n) (7)

Unlike transverse quasimomentum, pφ, the axial quasimomentum φz is as-

sumed to vary continuously within the range 0 ≤ pz ≤ 2π/a, which corre-

sponds to the model of infinitely long CNT (L =∞). This model is applica-

ble to the case under consideration because we are restricted to temperatures

and/or voltages well above the level spacing [32], i.e. kβT > εc,∆ε, where kβ
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is Boltzmann constant, T is the temperature, εc is the charging energy. The

energy expression in eq (4) and (5) can be expressed in the Fourier series as

ε(pz, s∆pφ) = ε(pz) = γ0

∑
r 6=0

exp(iarpz) (8)

where εrs is given as

εr,s =
a

2πγ0

∫ 2π
a

0

εs(pz)exp(−irapz)dpz (9)

the quasiclassical velocity of an electron moving along the CNTs axis is given

by the expression vz(pz, s∆pφ) = ∂εrs(pz)/∂pz. Substituting eqn (9) and

expressing further gives

vz(pz, s∆pz) = γ0

∑
r 6=0

∂(εrsexp(iarpz)

∂pz
= γ0

∑
r 6=0

iarεrsexp(iarpz) (10)

Considering the presence of hot electrons source, the motion of quasiparti-

cles in an external axial electric field is described by the Boltzmann kinetic

equation in the form as shown below [30, 31]

∂f(p)

∂t
+ vz

∂f(p)

∂x
+ eE(t)

∂f(p)

∂pz
= −f(p)− f0(p)

τ
+ S(p) (11)

where S(p) is the hot electron source function, f0(p) is equilibrium Fermi dis-

tribution function, f(p, t) is the distribution function, vz is the quasiparticle

group velocity along the z−axis of carbon nanotube and τ is the relaxation

time. The relaxation term of equation (11) describes the electron-phonon

scattering, electron-electron collisions [31, 32] etc. Using the method origi-

nally developed in the theory of quantum semiconductor superlattices [31],

an exact solution of equation (11) can be constructed without assuming a

5



weak electric field. Expanding the distribution functions of interest in Fourier

series as

f(p, t) = ∆pφ

n∑
s=1

δ(pφ − s∆pφ)
∑
τ 6=0

frsexp(iarpz)ψv(t) (12)

f0(p) = ∆pφ

n∑
s=1

δ(pφ − s∆pφ)
∑
τ 6=0

frsexp(iarpz) (13)

for zz-CNTs

f(p, t) = ∆pφ

n∑
s=1

δ(pφ − s∆pφ)
∑
τ 6=0

frsexp(ibrpz)ψv(t) (14)

f0(p) = ∆pφ

n∑
s=1

δ(pφ − s∆pφ)
∑
τ 6=0

frsexp(ibrpz) (15)

for ac-CNTs where b = a/
√

3 or a = b/
√

3, δ(pφ − s∆pφ) is the Dirac-delta

function, frs is the coefficients of the Fourier series and ψv(t) is the factor

by which the Fourier transform of the nonequilibruim distribution function

differs from its equilibrium distribution counterpart. The expression for frs

can be expanded in the analogous form as

frs =
a

2π

∫ 2π
a

0

exp(−iarpz)
1 + exp(εs(pz))/kβT )

dpz (16)

The electron surface current density jz along the CNTs axis is also given by

the expression

jz =
2e

(2πh̄)2

∫ ∫
f(p, t)vz(p)d

2p (17)

the integration is carried over the fist Brillouin zone. For simplicity, we

consider a hot electron source of the simplest form given by the expression,

S(p) =
Qa

h̄
δ(φ− φ′)− aQ

n0

fs(φ) (18)
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where fs(p) is the stationary (static and homogeneous) solution of equation

(19), Q is the injection rate of hot electron , n0 is the equilibrium particle

density, φ and φ′ are the dimensionless momenta of electrons and hot elec-

trons respectively which are expressed as φzz = apz/h̄ and φ′zz = ap′z/h̄ for

zz-CNTs and φac = apz/
√

3h̄ and φ′ac = ap′z/
√

3h̄ for ac-CNTs, We now find

the high frequency conductivity of hot electrons in the nonequilibrium state

for zz-CNT by considering perturbations with frequency ω and wave-vector

k of the form

E(t) = Ez + Eω,kexp(−iωt+ ikx) (19)

f = fs(φ) + fω,kexp(−iωt+ ikx) (20)

Substituting equations (19) and (20) into equation (11) and rearranging

yields,
∂fω,k
∂φ

+ i[α + kvz]fω,k = −Eω,k
Ez

∂fs(φ)

∂φ
(21)

where α = −(ω+ivz) Ωzz. Solving the homogeneous differential equation (21)

and then introducing the Jacobi-Anger expansion and averaging the current

over time, we obtain the current density for the zz-CNTs in the presence of

hot electrons (jzzzHE) as

jzzzHE = i
4
√

3e2γ0

nh̄2

∑
l=1

r
∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)Ωzz

ω + iv −mΩzz

×

ηzz
n0

2π

∑
r

Ωzzexp(irφ)

(irΩzz + v + ηΩzz)
(exp(−irφ′ − v

(v + irΩzz)
) +

v

(v + irΩzz)
)(22)

where β is the normalized amplitude of the ac-field, jm(β) is the bessel func-

tion order m and Im(β) is the modified bessel function order m. In the

absence of hot electrons, the nonequalibrium parameter for zz-CNT ηzz = 0,
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hence the current density for zz-CNTs without hot electron source j(z)zz

could be obtained from equation (22) by setting ηzz = 0. Therefore, the

current density of zz-CNTs in the absence of hot electrons jzzz is given by

jzzz = i
4
√

3e2γ0

nh̄2

∑
l=1

r
∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)Ωzz

ω + iv −mΩzz

(23)

Using similar argument like one for zz-CNT, the current density for an ac-

CNT with and without the injection of hot electrons are expressed respec-

tively as:

jaczHE = i
4e2γ0√
3nh̄2

∑
l=1

r
∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)Ωac

ω + iv −mΩac

×

ηac
n0

2π

∑
r

Ωacexp(irφ)

(irΩzz + v + ηΩac)
(exp(−irφ′ − v

(v + irΩac)
) +

v

(v + irΩac)
) (24)

jacz = i
4e2γ0√
3nh̄2

∑
l=1

r
∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)Ωzz

ω + iv −mΩzz

(25)

Results and discussion

We now present a semiclassical theory of electron transport in a CNT

under conditions where, in addition to the dc field causing a Negative Differ-

ential Conductivity (NDC), a similarly strong ac field is present,. Here the

ac field plays a two fold role: It suppresses the space-charge instability in

CNT and simultaneously pumps an energy for generation and amplification

of THz radiation at higher frequency [33]. Figure 1 displays the behaviour of

the normalized current density ( Jz =
JzzzHE
j0

, where j0 = 4e2γ0√
3nh̄2

) as a function

of the frequency (ω) of ac field for the CNTs stimulated axially with the hot

electrons, represented by the nonequilibrium parameter η. In the absence
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Figure 1: A plot of normalized current density ( Jz) versus frequency of ac field (ω) as
the nonequilibrium parameter (η) increases from 0 to 4.5×10−9 for (a) (3, 0) zz-CNT and
(b) (3, 3) ac-CNT , T = 287.5K and v = 1THz

of hot electrons ( η = 0), we observed that the differential conductivity is

initially negative at zero frequency. With increasing frequency of ac electric

field ω from zero, the differential conductivity becomes more negative until a

minimum peak is reached at a frequency ω about 1.8THz for both zz-CNT

and ac-CNT . Then after the differential conductivity turns positive when

ω > 1.8THz until the maximum peak is attained at ω ≈ 4.5THz and then

decrease when ω > 4.5THz for both zz-CNT and ac-CNT. The Positive

Differential Conductivity (PDC) is considered as one of the conditions for

electric stability of the system [34] and indicative for terahertz gain without

the small spike or fluctuations of electrons associated with NDC that am-

plifies, induces space charge accumulation and finally develops into electric

field domain [35]. The electrical domain development and transporting in-

duce unstable non uniform electric field distribution, which in turn prevents
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the operation of the Bloch oscillations. Thus suppressing domain formation

is a prerequisite to observe Bloch oscillations necessary for terahertz gain [35].

As we increase the nonequilibrium parameter η which increases as the rate of

hot electrons injection increases from 0 (no hot electrons) to 4.5×10−9 (pres-

ence of hot electrons), we observed that the minimum peak decreases and

shifts to the left (i.e., low frequency). In the contrary, the maximum peak

increases and also shifts to the left (i.e., low frequency) as shown in figure 1.

In figure 2, we display the behaviour of normalized current density (Jz) as a

function of frequency of ac field (ω) as the nonequilibrium parameter (η) is

further increased to 23.0× 10−9. As we further increase the nonequilibrium

Figure 2: A plot of normalized current density ( Jz) versus frequency of ac field (ω) as
the nonequilibrium parameter (η) increases from to 23 × 10−9 for (a) (3, 0) zz-CNT and
(b) (3, 3) ac-CNT , T = 287.5K and v = 1THz

parameter η to 23.0×10−9 ( i.e strong enough injection rate), we now noticed

that both the minimum and maximum peaks increase and shift to the left

(i.e., low frequency) for η ≥ 17.0× 10−9. Hence high frequency conductivity
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of strong enough hot electrons in CNTs leads to increase in both the mini-

mum and maximum peaks of normalized current density at lower frequencies

as shown in figure 2. To put the above observations in perspective, we dis-

play in figures 3 and 4, a 3-dimensional behavior of the normalized current

density (Jz) as a function of the frequency of ac field (ω) and nonequilibrium

parameter (η) In figure 3, we observed that when nonequilibrium parameter

Figure 3: A 3D plot of normalized current density ( Jz) versus frequency of ac field (ω)
as the nonequilibrium parameter (η) increases from 0 to 4.5× 10−9 for (a) (3, 0) zz-CNT
and (b) (3, 3) ac-CNT , T = 287.5K and v = 1THz

η is zero, the minimum peak is the greatest at a relative high frequency while

the maximum peak is the least also at high frequency. As nonequilibrium

parameter η increases from 0 to 4.5× 10−9, the minimum peak gradually de-

creases and shifts towards left ( i.e. low frequency) while the maximum peak

slowly increases and also shift towards left ( i.e. low frequency) In figure 4,

as nonequilibrium parameter η further increases from 0 to 23.0 × 10−9, the

minimum peak initially decreases and shifts towards left ( i.e. low frequency)

and then finally increases and shifts towards left ( i.e low frequency) until the
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Figure 4: A 3D plot of normalized current density ( Jz) versus frequency of ac field (ω)
as the nonequilibrium parameter (η) increases to 23× 10−9 for (a) (3, 0) zz-CNT and (b)
(3, 3) ac-CNT , T = 287.5K and v = 1THz

highest minimum peak is attained at the lowest frequency. The trend of the

maximum peak as nonequilibrium parameter further increases to 23.0×10−9

remain unchanged.

Conclusion

In summary, we have shown theoretically a high frequency conductivity

of hot electrons in a CNT under conditions where, in addition to the dc

field causing NDC, a similarly strong ac field is applied . The applied ac-

field plays twofold role of suppressing the space-charge instability in CNT

and simultaneously pumping an energy for generation and amplification of

THz radiation which have enormous promising applications in very different

areas of science and technology. The generation of this radiation occurs at

lower frequency . This is mainly because of increase in both the minimum

and maximum peaks of normalized current density at lower frequencies as a
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result of the presence of hot electrons .
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