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Abstract

Hot electrons injection in carbon nanotubes (CNTs ) where in addition to

applied dc field (E), there exist simultaneously a quasi-static ac electric field

(i.e. when the frequency ω of ac field is much less than the scattering fre-

quency v (ω � v or ωτ � 1, v = τ−1, where τ is relaxation time) is

considered. The investigation is done theoritically by solving semiclassical

Boltzmann transport equation with and without the presence of the hot

electrons source to derive the current densities. Plots of the normalized

current density versus dc field (E) applied along the axis of the CNTs in

the presence and absence of hot electrons reveal ohmic conductivity initially

and finally negative differential conductivity (NDC) provided ωτ � 1 (i.e.

quasi- static case). With strong enough axial injection of the hot electrons

, there is a switch from NDC to positive differential conductivity (PDC)

about E ≥ 75kV/cm and E ≥ 140kV/cm for a zigzag CNT and an armchair
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CNT respectively. Thus, the most important tough problem for NDC region

which is the space charge instabilities can be suppressed due to the switch

from the NDC behaviour to the PDC behaviour predicting a potential gener-

ation of terahertz radiations whose applications are relevance in current-day

technology, industry, and research.

Introduction

Carbon nanotubes (CNTs) [1] - [3] are subject of many theoretical [4]

- [9], and experimental [10] - [18] studies. Their properties include a ther-

mal conductivity higher than diamond, greater mechanical strength than

steel and better electrical conductivity than copper [19] - [21]. These novel

properties make them potentially useful in a variety of applications in nan-

otechnology, optics, electronics, and other fields of materials science [22] [24].

Rapid development of submicrometer semiconductor devices, which may be

employed in high-speed computers and telecommunication systems, enhances

the importance of hot-electron phenomena [25]. Hot electron phenomena

have become important for the understanding of all modern semiconductor

devices [26]- [27]. There are several reports on hot electrons generation in

CNTs [28]- [30], but the reports on hot electrons injection in CNTs under

the influence of quasi-static ac field to the best of our knowlege are limited.

Thus, in this paper, we analyzed theoretically hot electrons injection in (3, 0)

zigzag(zz) CNT and (3, 3) armchair (ac) CNT where in addition to dc field, a

quasi-static ac electric field is applied. Adopting semiclassical approach , we

obtained current density for each achiral CNTs after solving the Boltzmann

transport equation in the framework of momentum-independent relaxation
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time . We probe the behaviour of the electric current density of the CNTs

as a function of the applied dc field E of ac− dc driven fields when the fre-

quency of ac field (ω) is much less than the scattering frequency (v) (ω � v

or ωτ � 1 i.e quasi-static case [31], where v = τ−1) with and without the

axial injection of the hot electrons.

Theory

Suppose an undoped single walled achiral carbon nanotubes (CNTs) (n, 0)

or (n, n) of length L is exposed to a homogeneous axial dc field E given by

E = V/L, where V is the voltage between the CNT ends. Under the influence

of the applied dc field and assuming scattering is negligible, electrons with

electronic charge (e) obey Newton’s law of motion given by [32]

dP

dt
= eE (1)

where P is a component of quasimomentum along the axis of the tube.

Adopting semiclassical approximation approach and considering the motion

of π− electrons as a classical motion of free quasi-particles with dispersion

law extracted from the quantum theory while taking into account to the

hexagonal crystalline structure of CNTs and applying the tight-binding ap-

proximation gives the energies for zz−CNT and ac-CNT respectively

ε(s∆pϑ, p) ≡ εs(p) =

± γ0

[
1 + 4cos (ap) cos

(
a√
3
s∆pϑ

)
+ 4cos2

(
a√
3
s∆pϑ

)]1/2
(2)
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ε(s∆pϑ, p) ≡ εs(pz) =

± γ0

[
1 + 4cos (as∆p}) cos

(
a√
3
pϑ

)
+ 4cos2

(
a√
3
pϑ

)]1/2
(3)

where γ0 ≈ 3.0eV is the overlapping integral, ∆pϑ is transverse quasimomen-

tum level spacing and s is an integer. The lattice constant a in Eqn.(2) and

(3) is expressed as [33]

a =
3b

2h̄
(4)

where b = 0.142nm is the C-C bond length . The (−) and (+) signs cor-

respond to the valence and conduction bands respectively. Because of the

transverse quantization of the quasimomentum P , its transverse component

pϑ can take n discrete values,

pϑ = s∆pϑ =
π
√

3s

an
(s = 1, ....., n) (5)

As different from pϑ, we assume p continuously varying within the range

0 ≤ p ≤ 2π/a which corresponds to the model of infinitely long CNT

(L = ∞). The model is applicable to the case under consideration be-

cause we are restricted to temperatures and/or voltages well above the level

spacing [33], i.e. kBT > εc, ∆ε, where kB is Boltzmann constant, T is the

thermodyanamic temperature, εc is the charging energy. In the presence of

hot electrons source, the motion of quasi-particles in an external axial electric

field is described by the Boltzmann kinetic equation as [32]- [33]

∂f(p)

∂t
+ v

∂f(p)

∂x
+ eE(t)

∂f(p)

∂p
= −f(p)− feq(p)

τ
+ S(p) (6)
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where feq(p) is equilibrium Fermi distribution function, f(p, t) is the distribu-

tion function, S(p) is the hot electron source function, v is the quasiparticle

group velocity along the axis of carbon nanotube and τ is the relaxation

time. The relaxation term of Eqn.(6) above describes the electron-phonon

scattering, electron-electron collisions [34] [35] etc.

Applying the method originally developed in the theory of quantum semi-

conductor superlattices [33], an exact solution of equation (6) can be con-

structed without assuming a weak electric field. By expanding the distribu-

tion functions of interest in Fourier series, we have:

f(p, t) = ∆pϑ

n∑
s=1

δ(pϑ − s∆pϑ)
∑
r 6=0

frsexp(iarp)ψv(t) (7)

and

feq(p) = ∆pϑ

n∑
s=1

δ(pϑ − s∆pϑ)
∑
r 6=0

frsexp(iarp) (8)

for zz-CNT and

f(p, t) = ∆pϑ

n∑
s=1

δ(pϑ − s∆pϑ)
∑
r 6=0

frs exp ir(a/
√

3p)ψv(t) (9)

and

feq(p) = ∆pϑ

n∑
s=1

δ(pϑ − s∆pϑ)
∑
r 6=0

frs exp{ir(a/
√

3p)} (10)

for ac-CNTs

where δ(pϑ − s∆pϑ) is the Dirac delta function, frs is the coefficients of the

Fourier series and ψv(t) is the factor by which the Fourier transform of the

nonequilibrium distribution function differs from its equilibrium distribution
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counterpart. For simplicity, we consider a hot electron source of the simplest

form given by the expression,

S(p) =
Qa

h̄
δ(ϕ− ϕ′)− aQ

n0

fs(ϕ) (11)

where fs(p) is the static and homogeneous ( stationary) solution of Eqn.(6),

Q is the injection rate of hot electron, n0 is the equilibrium particle density,

ϕ and ϕ′ are the dimensionless momenta of electrons and hot electrons re-

spectively which are expressed as ϕ = ap/h̄ and ϕ′ = ap′/h̄ for zz-CNTs and

ϕ = ap/
√

3h̄ and ϕ′ = ap′/
√

3h̄ for ac-CNTs,

We now obtain the current density in the nonequilibrium state for zz-CNT

where in addition to applied dc field, there exist simultaneously a quasi-

static ac electric field by considering perturbations with frequency ω and

wave-vector κ of the form [32].

E(t) = E + Eω,kexp(−iωt+ ikx) (12)

f = fs(ϕ) + fω,kexp(−iωt+ ikx) (13)

where E is dc field along the axis of the tube, Eω,κe
−iωt+iκx is ac-field, Eω,κ is

peak ac field and fs(ϕ)is the static and homogeneous (stationary) solution of

Eqn.(6). Substituting Eqn.(12) and (13) into Eqn.(6) and rearranging yields,

∂fω,k
∂ϕ

+ i[α + kvzh̄/aeE]fω,k = −Eω,κ
E

∂fs(ϕ)

∂ϕ
(14)

where α = −h̄(ω + iv)/aeE and fω,k is the solution of Eqn.(14). Solving

the homogeneous differential Eqn.(14)and and then introducing the Jacobi-

Anger expansion, we obtain the normalized current density in the presence

6



of hot electrons (jzzHE) as

jzzHE = i
4
√

3e2γ0

nh̄2

∑
r=1

r
∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)aeE

([ω + iv]h̄−m(ae)E)

×

{
η
no
2π

∑
r

aeEexp(irϕ)

(ir(aeE) + vh̄+ η(aeE))
(exp(−irϕ′)− vh̄

(vh̄+ ir(aeE))

)
+

vh̄

(vh̄+ ir(aeE))

}
(15)

where

frs =
a

2π∆pϑ

∫ 2π/a

0

exp(−iarp)
1 + exp{εs(p)/kBT}

dp

εrs =
a

2πγ0

∫ 2π/a

0

εs(p) exp(−iarp)dp

β = κγ0a/Ωh̄, η = Q/Ωn0 and Ω = eaE/h̄, jm(β) is the mth order Bessel

function of the first kind, J(m−1)(β) is the (m − 1)th order Bessel function

of the first kind, I(m−l)(β)is (m− 1)th order modified Bessel function of the

first kind, Q is rate of hot electrons injection, n0 is the particle density Ω is

the Bloch frequency and η is the non-equilibrium parameter.

In the absence of hot electrons, the nonequalibrium parameter for zz-

CNT, η = 0, hence the current density for zz-CNTs without hot electron

source jzz could be obtained from Eqn.(15) by setting η = 0. Therefore, the

electric current density of zz-CNTs in the absence of hot jzz is given by

jzzz = i
4
√

3e2γ0

nh̄2

∑
l=1

r
∑
s=1

frsεrs

×
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)(ae)E

([ω + iv]h̄−m(ae)E)

{∑
r

vh̄

vh̄+ ir(aeE)

}
(16)
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Applying similar argument like one for zz-CNT, the current density for an

ac-CNT with and without the injection of hot electrons are expressed respec-

tively as:

jacHE = i
4e2γ0√
3nh̄2

∑
r=1

∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)(ae)E

(
√

3[ω + iv]h̄−m(ae)E)

×

{
η
no
2π

∑
r

(ae)Eexp(irϕ)

(ir(aeE) +
√

3vh̄+ η(aeE))

(
exp(−irϑ′)−

√
3vh̄

(
√

3vh̄+ ir(aeE))

)

+

√
3vh̄

(
√

3vh̄+ ir(aeE))

}
(17)

and

jac = i
4e2γ0√
3nh̄2

∑
r=1

r
∑
s=1

frsεrs
∑

m,l=−∞

ilmljm(β)jm−l(β)Im−l(β)(ae)E

(
√

3[ω + iv]h̄−m(ae)E)

×
∑
r

√
3vh̄√

3vh̄+ ir(aeE)
(18)

where

frs =
a

2π∆pϑ

∫ 2π/a

0

exp(−iarp/
√

3)

1 + exp{εs(p)/kBT}
dp

εrs =
a

2πγ0

∫ 2π/a

0

εs(p) exp(iarp/
√

3)dp

β = κγ0a/Ω
√

3h̄, η = Q/Ωn0 and Ω = eaE/
√

3h̄

Results and discussion

We display the behaviour of the normalized current density ( J = j/jos)

and jos = (4
√

3e2γ0)/nh̄ (zz-CNT) or 4e2γ0/
√

3nh̄2(ac − CNT ) as a func-

tion of the applied dc field E when frequency of ac field ω is much less than
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scattering frequency v(ω � v or ωτ � 1 i.e. quasi-static case) for the CNTs

stimulated axially with the hot electrons, represented by the nonequilibrium

parameter η in figure 1. As we increase the nonequilibrium parameter η

Figure 1: A plot of normalized current density (Jz) versus applied dc field (Ez) as the
onequilibrium parameter η increases from 0 to 13.0 × 10−9 when ω << v or ωτ << 1
(i.e.quasi-static case), for (a) (3, 0) zz-CNT and (b) (3, 3) ac-CNT, T = 287.5K , ω =
10−4THz, v = 1THz or τ = 1ps and ωτ = 10−4

from 0 to 13.0 × 10−9, we noticed that the normalized current density has

the highest peak for η (no hot electrons). As the hot electrons injection rate

increases, the peak of the current density decreases and shifts to the left

(i.e., low dc fields). This is caused by the scattering effects due to electron-

phonon interactions as well as the increase in the direct hot electrons injection

rate [36] [37]. The normalized current density (J) of the CNTs exhibits a

linear monotonic dependence on the applied dc field (E) at weak field (i.e.,the

region of ohmic conductivity) when frequency of ac field ω is much less than

scattering frequency v (ω � v or ωτ � 1 i.e. quasi-static case, where

v = τ−1). As the applied dc field (E) increases, the normalized current

density (J) increases and reaches a maximum, and drops off, experiencing
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a negative differential conductivity (NDC) for both the zz- CNT and the

ac-CNT as shown in figures 1a and 1b, respectively. The NDC is due to the

increase in the collision rate of the energetic electrons with the lattice that

induces large amplitude of oscillation in the lattice, which in-turn increases

the electrons scattering rate that leads to the decrease in the current density

at high dc field [37]. Similar effect was observed by Mensah, et. al. [40] in su-

perlattice. As the injection rate of the hot electrons becomes strong enough

, the current density up-turned, exhibiting a positive differential conductiv-

ity (PDC) near 75kV/cm and 140kV/cm for the zz-CNT and the ac-CNT,

respectively. In this region, the hot electrons become the dominant deter-

mining factor [36]. The physical mechanism behind the switch from NDC to

PDC is due to the interplay between the hot electrons pumping frequency

(Q/n0), which is a function of rate of hot electrons injection (Q), and the

Bloch frequency (Ω), which depends on the dc field (E) [37]. At stronger dc

field, the rate of scattering of the electrons by phonons is well pronounced re-

sulting in the gradual decrease in the current density with increasing dc field

(NDC region). However, as the rate of hot electrons injection increases, the

corresponding rise in the current density due to hot electrons injection now

far exceeds the reduction in the current density due to scattering of electrons

by phonons. Thus, the net effect on the current density from the two oppos-

ing sources (with the hot electrons being dominant) gives rise to the PDC

characteristics as shown in figure 1 for η ≥ 9.0×10−9. The desirable effect of

a switch from NDC to PDC takes place when η is larger than a critical value

ηc ≈ 4.5 × 10−9. When axial injection of hot electrons into achiral CNTs

is strong enough, the nonequilibrium parameter η exceeds the critical value

10



ηc ≈ 4.5× 10−9 and the NDC characteristics change to the PDC characteris-

tics. Thus, the most important tough problem for NDC region which is the

space charge instabilities that inevitably lead to electric field domains forma-

tion resulting in non uniform electric field distribution which usually destroys

THz Bloch gain can be suppressed due to the switch from the NDC behaviour

to the PDC behaviour [38]. This is mainly due to the fact that PDC is con-

sidered as one of the conditions for electric stability of the system necessary

for suppressing electric field domains [38]. Hence a critical challenge for

the successful observation of THz Bloch gain is the suppression of electric

field domains by switching from NDC region to PDC region. This is similar

to that observed by Mensah, et. al. [40] in effect of ionization of impurity

centers in superlattice. To put the above observations in perspective, we dis-

play in figure 2, a 3-dimensional behaviour of the normalized current density

(J) as a function of the applied dc field (E) and nonequilibrium parameter

(η) when frequency of ac field ω is much less than scattering frequency v

(ω � v or ωτ � 1 i.e. quasi-static case, where v = τ−1) for the CNTs.

The dc differential conductivity and the peak of the current density are at

the highest when the nonequilibruim parameter η is zero. For both zz-CNT

and ac-CNT, as the nonequilibrium parameter η gradually increases the dc

differential conductivity and the peak normalized current density decrease

until the critical nonequilibrium parameter value ηc ≈ 4.5× 10−9 is reached,

beyond which the NDC characteristics slowly changes to PDC characteris-

tics as shown in figure 2. We further display the behaviour of the normalized

current density (J) as a function of the applied dc field (E) of ac− dc driven

fields as ωτ incrreasing from 0.01 to 0.15 when the nonequilibrium parameter
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Figure 2: A 3D plot of normalized current density (Jz) versus applied dc field (Ez) as the
onequilibrium parameter η increases for (a) (3, 0) zz-CNT and (b) (3, 3) ac-CNT, when
ω << v or ωτ << 1 (i.e. quasi-static case), v = τ−1, T = 287.5K , ω = 10−4THz,
v = 1THz or τ = 1ps and ωτ = 10−4

η = 0.9 × 10−9 (presence of hot electrons) and η = 0(absence of hot elec-

trons) for (3, 0) zz- CNT and (3, 3) ac-CNT in figure 3. As we increase ωτ

Figure 3: A plot of normalized current density ( Jz) versus applied dc field (Ez) as ωτ << 1
increases from 0.01 to 0.17 for (a) (3, 0) zz-CNT and (b) (3, 3) ac-CNT when η = 0 and
η = 0.9× 10−9, v = 1THz or τ = 1ps

from 0.01 to 0.15 , we observed that the normalized current density has the

highest peak at ωτ = 0.01. Upon increasing the ωτ , the peak current density

12



decreases until the least peak is attained when ωτ = 0.15. Furthermore,we

observed a switch from NDC to PDC near 75kV/cm and 140kV/cm for zz-

CNT and ac- CNT respectively so far as ωτ � 1( i.e 0.01 to 0.15). Also

the differential conductivity (∂J/∂E) in NDC region is fairly constant as ωτ

increases from 0.01 to 0.15. However in PDC region after the switch from

NDC, differential conductivity(∂J/∂E)fairly increases as ωτ increases from

0.01 to 0.15 as shown in figure 3a and 3b for zz-CNT and ac-CNT respectively.

In the absence of hot electrons (η = 0), we observed a shift of peak current

density towards right ( i.e high dc-field) as ωτ increases from 0.01 to 0.15 for

each achiral CNT. Hence, the current density dc field (J −E)characteristics

for CNTs show a negative differential conductivity at stronger electric field

without hot electrons and with strong enough axial injection of hot electrons

(i.e. η ≥ 0.9 × 10−9), there is a switch from NDC to PDC leading to high

electric field domain suppression necessary for generation of THz radiations

provided ωτ � 1(i.e quasi-static ac field).

Conclusion

In summary, we have analyzed theoretically that strong enough injection

of hot electrons in a CNT under conditions where, in addition to the dc field

causing NDC, a similarly ac field is applied with a frequency ω much less than

that of the scattering frequency v (i.e. ω � v or ωτ � 1, quasi-static case,

v = τ−1), NDC switches to PDC. Hence, strong enough axial injection of hot

electrons in CNT under the influence of quasi-static ac field results in a switch

from NDC to PDC leading to the suppression of the destructive electric

domain instability, predicting a potential generation of terahertz radiations

whose applications are relevance in current-day technology, industry, and

13



research. Although similarly effect has been observed in the absence of quasi-

static ac field [37], the differential conductivity (∂J/∂E) is higher and also

hot electrons injection rate beyond which there is a switch from NDC to PDC

represented by critical noneqilibrium parameter ηc) is lower in the presence

of quasi-static ac- field than in the absence.
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