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Abstract

Using the Boltzmann transport equation within the semi-classical approximation with constant
relaxation time, we theoretically studied the dynamics of electrons in chiral single wall nanotubes
(SWNTs) subjected to a temperature gradient (VT) in the presence of a combined direct current and
high frequency alternating fields. We obtained an expression for the resistivity (p,) of the SWNT's
which varies with temperature and depends among others on material’s chiral angle (6},), dc field
strength (E,) and ac field amplitude (E;). Our results show that chiral SWNT's exhibit metallic behavior
with resistivity increasing approximately linearly with temperature over a wide temperature range well
above 100 K. Based on the low chiral resistivity obtained for the SWNTSs at room temperatures, we
propose these materials as good candidates for possible optoelectronic applications.

1. Introduction

Carbon nanotubes (CNTs) are a class of nanomaterials that consist of two-dimensional hexagonal lattice of
carbon atoms, bent and joined seamlessly in one direction so as to form a hollow cylinder [1, 2]. For the past few
decades, interest in the study of CNTs has increased due to their unique electrical, electronic and mechanical
properties caused by their small diameters and lattice orientation [3]; they can either be single-walled or multi-
walled [3]. Single wall nanotubes (SWNTs) are produced in the outflow of a carbon arc and in much higher yield
by laser vaporization of a graphite rod in an oven at 1200 °C [4]. SWNTs can either be semiconducting or
metallic, depending on their diameter and chirality [5]. Authors in [6] studied the temperature dependent
resistivity of single wall carbon nanotubes and compared their results with the predictions of the twiston theory
[7]. The outcome of their study predicted that intrinsic resistivity of twistons is proportional to the absolute
temperature. In this study, we investigate theoretically temperature dependent electrical resistivity of chiral
SWNTs along the base helix in the presence of a laser using the Boltzmann’s transport equation (BTE) with
constant relaxation time. To the best of our knowledge, no such study has been reported.

2. Theory

We consider a chiral SWNT under a temperature gradient VT placed in an electric field applied along the
nanotube axis. The carrier current density and resistivity in the SWNT are studied using the BTE following the
approach of [8] together with the phenomenological model of a SWNT developed in references [9, 10]. The BTE
which is based on the principle of conservation of charge, is a semi-classical formulation of transport and is
capable of including self-consistently the transport of both electrons and phonons, as well as externally applied
electric fields, electron-phonon interaction, anharmonic phonon decay, and many other types of scattering to a
desired level of accuracy and detail [11]. Within the classical domain of the BTE, each particle is assumed to
occupy a spatial and momentum coordinate and is described by a distribution function f (, p, t) which counts
the number of particles occupying each set of coordinate in space and momentum. To express the conservation
of particles in both space and time, the total rate of change in time is equated to the total rate of change in the
distribution function due to various scattering mechanisms. In the semi-classical formulation of the BTE,
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position and momentum are both independent and functions of time only and can be expressed as [12]:

of (r,p, 1) ofp ) | e fp D)~ fo(p)
ot or op T

where f (1, p, t) is the distribution function, fo(p) is the equilibrium distribution function, v(p) is the electron
velocity, ris the electron position, p is the electron dynamical momentum, ¢is the elapsed time, 7is the electron
relaxation time which is assumed to be constant and e is the electronic charge. The applied dc-ac field,
E(t) = E, + Escoswt,where E, is the constant electric field. E; and w are the amplitude and frequency of the ac
field, respectively.

Using the perturbation approach, equation (1) is solved in which the second term on the left-hand side is
treated as a weak perturbation. In the linear approximation of VT and quasi-fermilevel V s, the solution to
equation (1) is expressed as

foy =" exp(*i)fo(l’ ~ef" B+ Ecos wt’]dt’)dt
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where 11 is the electrochemical potential which ensures conservation of electrons and e(p) is the tight-binding
energy of the electron.
The current density is defined as

j= e vp)f(p) 3)
p
Substituting equation (2) into equation (3) gives
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Equation (4) becomes
j= eTflfoo0 exp(—é)dt%: v(p — ft;/ [Eo + E; cos Wt’]dt’)fo(p)
o0 t VT
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Using the phenomenological model [9, 10],a SWNT is considered as an infinitely long periodic chain of
carbon atoms wrapped along a base helix. Based on this model, the circumferential and axial current densities
can be expressed respectively in the form

j. = S cos b (6)
j, =2+ §sin#, 7)
where Z' and §' are respectively the components of the current density along the nanotube axis and the base
helix, and 6}, is the chiral angle.
Neglecting the interference between the axial and helical paths connecting a pair of atoms, transverse motion
quantization is ignored [9, 10]. This approximation best describes doped chiral carbon nanotubes and was

experimentally confirmed in [13]. In our study, the analysis is restricted to the properties of the current density
along the circumferential direction. Therefore, we resolve the current density along the base helix and obtain
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Using the transformation
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in equation (8) where d, and d; are the inter-atomic distance along the nanotube axis and the base helix
respectively, the flux along the base helix can further be expressed as
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where the integrations are carried out over the first Brillouin zone. The parameters v,, p, E;, VT, and V.
represent the respective components of v, p, E, VT and Vi along the base helix.

The energy dispersion relation for a chiral nanotube obtained in the tight-binding approximation is
expressed as

Pzdz

e(p) = g9 — A cos — A, cos

d
A% (10)
h
where ¢, is the energy of an outer-shell electron in an isolated carbon atom, A, and A, are the real overlapping
integrals for jumps along the respective coordinates, p; and p, are the components of momentum tangential to
the base helix and along the nanotube axis, respectively. The components v, and v, of the electron velocity v are

respectively
d
v(p) = 0= (p) = Asd, sin B4, (11)
op, h
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To calculate the carrier current density for the non-degenerate electron gas of the SWNT, the Boltzmann
equilibrium distribution function fo(p) is expressed in the form
A, cos p},ds + A, cos p‘;dz o )
fo(p) = Cexp : : (15)
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where Cis a normalization constant and is defined as

d.d,n, ( = 50)
= exp| —
200 (AN In(AY) kT

and g is the surface charge density, I,,(x) is the modified Bessel function of the nth order,

A¥ = %, A¥ = % and k is the Boltzmann’s constant.

Substituting equations (10)—(15) into equation (9) and evaluating the integrals, the following expression is
obtained for §'.

. * k (5O_M)_ *IO(A?) . *Il(Aj)
§' = —o(B)EY os(E>e{ e R e e (16)

where we have defined

EX =E, + V£
e

Also, the electrical conductivity of the chiral SWNT is expressed as
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Substituting equation (16) into equation (6), the circumferential component of the current density is
obtained as

Jj. = —0y(E)sin 0 cos OLEX
_ * *
_ JS(E)E sin 6, cos eh{(e(’ “) — Aj‘IO(A;) + z-AjI‘(Afk) v, T (18)
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the current density becomes
J. = —oy(E)sin 6, cos O,E — US(E)E sin ), cos O, {& — A*B,—A*A YV, T (20)
e

The circumferential component of the electrical conductivity is the coefficient of the electric field E)* and is
given as

0. = oy(E)sin 6y, cos 0, 21
The resistivity of the SWNT along its circumferential direction is defined as
1
pe = (22)

o,(E) sin 0}, cos 0},

3. Results and discussion

In this paper, we analytically studied the electrical resistivity of a chiral SWNT using the Boltzmann transport
equation. An expression was derived for the circumferential component of the electrical conductivity in the
presence of applied field E and is shown in equation (22). To analyze this expression numerically, a chiral SWNT
having the following parameters was chosen: d, = 14,d, = 2A,7 = 0.3 x 10""*sand 6}, = 4.0°.

The ac source has a frequency, w = 1025 'and amplitude E; = 5 x 107V m ™. The d. c. electric field,

E, = 6.9063 x 10’V m™", chosen such that Q7 = 1, where Q7= ed,E,/ h. Figure 1(a) shows the dependence of
the circumferential electrical resistivity, p. on temperature, T, for various fixed values of the dc field E,,.

Itis observed that p. changes slowly with temperature at low temperatures up to about 200 K and then
increases linearly with increasing temperature. This trend is attributed to electron-phonon interactions which
cause scattering of charge carriers along the circumferential direction of the chiral SWNT as temperature
increases. The low values of resistivity observed clearly suggest that chiral SWNT's do exhibit metallic properties.
Also noted is a significant increase in the circumferential resistivity as the electric field strength E, increases. As
E, isincreased, the electrons in the SWNT become more energetic, leading to increased collision with carbon
atoms within the walls of the SWNT which sets these carbon atoms into large amplitude oscillations which
enhance the scattering of the electrons. Experimentally, it has been observed that the resistivity of carbon
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Figure 1. Dependence of circumferential current density (p.) on temperature (T) for (a) fixed values of the d.c. field E,,, 2E,, 3E, and
4E,,where E, = 6.9063 x 10’V m ™ ".E, = 5.0 x 10’V m ', A, = 0.018eVand A, = 0.024 eV (b) fixed values of A, A, = 0.024
eV,E, = 5.0 x 10’V m™ " E = 2E,, whereE, = 6.9063 x 10’V m .

=@ = 1.2 degrees _Ax =0.010eV

————— 0 = 2.2 degrees A =0.020eV
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Figure 2. The variation of p. with temperature for (a) various fixed values of chiral angle, 6. A, = 0.024 eV, A, = 0.018 eV,
E, = 5.0 x 10’ Vm ', E = 2E,, where E, = 6.9063 x 10 (b) The dependence of p. on temperature for various fixed values of A,
A, = 0.018 eV, E; = 5.0 x 10'Vm™,E = 2E,, where E, = 6.9063 x 10’V m .

nanotubes varies with temperature [14—16]. The resistance generally decreases with decreasing temperature (as
shown theoretically in our study) up to a threshold temperature which is determined by the type and purity of
the carbon nanotube. Based on available experimental results, interesting electrical models have been developed
as a function of temperature range and carbon nanotube fabrication technique [17, 18]. For chiral SWNT's
however, our results are the first of such low temperature resitivity dependence study; to the best of knowledge.
On the other hand, figure 1(b) shows that the resistivity decreases markedly with increasing A,.

The dependence of the circumferential resistivity on temperature for given values of the chiral angle 6y, is
depicted in figure 2(a). The figure shows that increasing 6}, results in a decrease in the resistivity p. of the

chiral SWNT.

Interestingly, figure 2(b) indicates that keeping A constant and altering A, reduces p. by an order of
magnitude.

When the ac source is switched off, E, = 0,a = 0, w = 0and J?(a) becomes unity and equation (17)
reduces to
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Figure 3. The dependence of p. on temperature Tfor A, = 0.018 €V, A, = 0.024 ¢V,E=2E,.E, = 5 x 10’V m ™" and chiral angle,
0, = 4.0° for the case in which (a) laser is turned and (b) laser is turned off.

oi(E) =

e2rAid?ng [A¥ 1 e
P LA 1+ (ediEy/ )| ’

Figure 3 shows the circumferential current density dependence on temperature in the presence of a laser
(laser on) and absence of a laser (laser off).

Itis noted that when the laser source is off, p. reduces by a factor of two which indicates that within the
temeperature range under consideration, the laser field modulates the dc field and enhances the momentum and
kinetic energy of those electrons which are deficient in energy.

4, Conclusion

The circumferential resistivity, p. of a chiral SWNT induced with a laser field has been investigated using the
semi-classical approach. Our results indicate that the nanotube parameters (A A,, 6y, and the d.c. field E, and
laser source strength E; have significant influence on the resistivity with p. increasing with increasing E,,. The
results reveal that increases in both A and 6}, decrease p... The observed low resistivity exhibited by the chiral
SWNT atincreasing temperatures indicate that this unique material is a good conductor of electricity and could
serve as a good candidate for optoelectronic applications.
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