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Abstract: We theoretically study current dynamics of graphene nanorib-

bons subject to bias and ac driven fields. We showed that graphene nanorib-

bons exhibit negative high-harmonic differential conductivity. Negative dif-

ferential conductivity appears when bias electric filed is in the neighbor-

hood of applied ac filed amplitude. We also observe both even and odd

high-harmonic negative differential conductivity at wave mixing of two com-

mensurate frequencies. The even harmonics are more pronounced than the

odd harmonics. A possible use of the present method for generating tera-

hartz frequencies at even harmonics in graphene is suggested.

Keywords and phrases: Graphene, Current density, Bessel function,

Bloch oscillations, Negative differential conductivity.

Received February 2012.

1. Introduction

Graphene has continued to surprise scientists since its discovery in 2004 by Geim
and his team [1]. Theoretically, the carrier transport properties are fantastic.
Especially, its high carrier mobility of 44000cm2V −1s−1 [2] and high current
density. But attempts to utilize these in graphene devices is posing some diffi-
culties. The limitation is probably due to several factors including; lack of band
gap in graphene sheets, edge defects, disorder, among others. To overcome some
of these obstacles, the dimension of graphene sheets has to be reduced. After all,
new physics (quantization) emerge when dimensions of materials are reduced.
An infinite 2D graphene could become 1D + quantization along one other di-
rection opening a gap. The resulting material is graphene nanoribbon (GNR).
Depending on the nature of the edges, one can get two symmetry groups from the
GNR, armchair (aGNR) or zigzag (zGNR). Electron dynamics of both aGNR
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and zGNR have different electronic properties, mostly due to the berry phase
and pseudo spin [9]. Edge states have significant contribution to graphene prop-
erties, because in a nanometer size ribbon, massless Dirac fermions can reach
the edges within a femto-second before encountering any other lattice effects,
like electron-electron interaction, electron-phonon interaction, etc.

In this paper, we study the phenomenon of negative differential conductivity
(NDC) in GNRs. In conventional semiconductor devices, a negative differential
conductive behavior is known to offer great potential for high frequency appli-
cations as Bloch oscillators, frequency multipliers, and fast switching devices.
For this reason, the NDC effect has been greatly explored and discussed in sev-
eral graphene nanostructures, including [6]. NDC can also be observed in other
graphene allotropes; carbon nanotubes (CNT) [12]. The unique energy spectrum
of holes and electrons, especially its gapless nature leads to nontrivial features
such as Negative Differential Conductivity (NDC) in the THz regime [6].

In fact, we must emphasize that the phenomenon of NDC and Bloch oscillations
in a material is a possibility for THz generations in such material [7, 11], since
NDC occurs in the THz spectral range. Most of the methods of producing THz
frequencies are experimental and only very few analytical (without computer
numerics) approaches are known. Though Green function techniques have also
been employed in some cases. Motivated by the fact that a rigorous analytical
approach is necessary for studying NDC in GNRs, we adopt a semi-classical
method used in references [5, 12] for armchair and zigzag CNTs. We predict
that GNRs should also reproduce similar results as in reference [5] because
both CNTs and GNRs have almost the same full tight binding (TB) nonlinear
complex band structure.

The rest of this paper is organized as follows; In section 2, we derived the
current density of aGNR and zGNR and imposed certain conditions to reduce
the equations to appropriate forms. The results obtained in this section are
plotted and discussed in section 4. The paper finally concludes in section 5 and
by making some recommendations for future applications.

2. The theory

As it is usually done in semi-classical treatment of quantum systems, we assume
that the dynamics of the free π-electrons in graphene satisfies the BTE in zero
magnetic field. That is,

∂f(k, t)

∂t
+

eE(t)

~

∂f(k, t)

∂k
= Γ[f(k, t)− f0(k)] (2.1)

We are also assuming relaxation time approximation and spatial uniform nanorib-
bon. The inverse of the relaxation time Γ is momentum independent. For the
case of energy varying Γ, see [3]. In Eq.2.1, f0(k) and f(t, k) are the equilibrium
and non-equilibrium Fermi electron distribution functions, respectively. e is the
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electronic charge, k is the electron wave vector and ~ is the reduced plank con-
stant. We consider an external applied field E(t) as a superposition n harmonic
waves;

E(t) = e

n
∑

j=0

Eje
i(ωjt+αj), (2.2)

polarized along one direction with the angular frequency ω. The phase difference
between the (j + 1)th and jth wave being αj+1 − αj = α is arbitrary, j is an
integer. Ej are the amplitudes. We require that ω0 = α0 = 0. In the following
section we will look at separately aGNR and zGNR.

2.1. Armchair and zigzag nanoribbon band structures

The energy band structure of aGNR and zGNR is characterized by three pa-
rameters, band index λ, phase θ and wave vector k [9, 10],

Eλ(k, θ) = λγ0
√

1 + 4cos2(s∆θ) + 4cos(s∆θ)cos(kl). (2.3)

for aGNR and

Eλ(k, θ) = λγ0
√

1 + 4cos2(kl′) + 4cos(s∆θ)cos(kl′). (2.4)

for zGNR. Where λ = ±1. (+) for conduction band and (-) for valence band.
l =

√
3a/2, a is the lattice spacing with value 0.246nm, γ0 ∼ 3.0eV is the overlap

integral and θ is the phase perpendicular to the quasi-momentum ~k. l′ = a/2.
The 1BZ of aGNR is bounded by kl = [−π/2, π/2] and the zGNR is kl′ = [0, π].
k is parallel to the edge and has translational symmetry along this direction.
For aGNR, the transverse wave vector (phase) is quantized according to the rule
[9], θs = s∆θ with ∆θ = π

N+1 and s = 1, 2, . . . ,N . Unlike aGNR, the nature of
transverse wave vector quantization is complicated in zGNR, depending on both
k and θ as θn = (πj + Λ(k, θ))/(n+ 1). However, for simplicity we assume Λ is

constant, say π/2, so that θn =
(2j+1)π

2

n+1 . Except this little subtlety, all that is
discussed in section 2.1 equally apply here. Thus the current density for zGNR
is also given by Eq.(3.5).

Now, employing the translational invariance of the graphene in the reciprocal
space, we expand in Fourier series functions f , f0 and E along the edge having
the periodicity in k;

f0(k, θ) =
∑

r 6=0

fr(θ)e
irkl, (2.5)

f(k, θ, t) =
∑

r 6=0

fr(θ)e
irklΦr(t), (2.6)

E(k, θ) = γ0
∑

r 6=0

Er(θ)eirkl. (2.7)
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The Fourier coefficient fr is expressed as fr(θ) =
∑N

s=1 frs∆θδ(θs − s∆θ)
with

frs =
l

πs∆θ

∫ π/2l

−π/2l

dkf0(k, θ)e
−irkl, frs = f∗

−rs (2.8)

and

Er =
l

2πγ0

∫ π/2l

−π/2l

dkE(k)e−irkl, Er = E∗
−r. (2.9)

We assume s counts the number of dimers N in GNR energy dispersion. The
factor Φr in Eq.(2.9) is a central point in this paper and so has to be determined.
r is an integer and not equal to zero. We consider a classical limit in which energy
levels could be excited due to thermal fluctuations, i.e ∆E << KBT << EC .
This condition is also necessary to for large enough field, so that charge carriers
can escape low energy scattering [16]. The energy level spacing ∆E = πWγ0l/A,
EC is the charging energy, KB is the Boltzmann constant, T is the temperature
and W is the graphene width. In what follows next, we will find the form of Φ(t).
To do this Eqs.(2.5), (2.6), (2.7) are substituted in Eq.(2.1) using the boundary
conditions t = 0, Φr = 1 to yield

dΦr(t)

dt
= [Γ + irΩ(t)]Φr(t)− Γ = 0, (2.10)

where Ω(t) = Ω0 + el
~

∑n
j=1 Eje

iωjt+αj is the modulation degree of anhar-
monicity in electron motion. The solution of eq.(2.10) is straight foward one,
thus

Φr(t) =
Γ
∫

dteΓt+i
∑

n
j=1

βje
iωj t+αj+iβ0t

eΓt+i
∑

n
j=1

βje
iωj t+αj+iβ0t

, (2.11)

βj = erlEj/~ωj and β0 = Ω0 = erlE0. One can introduce product notation in
eq.(2.11) as

ReΦr(t) = Γ

n
∏

j′=1

n
∏

j=1

[

e−Γt−iβ′

jcos(iω
′

jt+α′

j)−iβ0t
]

×
∫

dteΓt+iβjcos(iωjt+αj)+iβ0t, (2.12)

ImΦr(t) = Γ

n
∏

j′=1

n
∏

j=1

[

e−Γt−iβ′

jsin(iω
′

j t+α′

j)−iβ0t
]

×
∫

dteΓt+iβjsin(iωj t+αj)+iβ0t. (2.13)

Eqs.(2.12), (2.13) are connected with the well known Bessel functions via Jacobi-
Anger expansion

e±iβjsinθ =

∞
∑

m=−∞
Jm(βj)e

±imθ,
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e±iβjcosθ =

∞
∑

m=−∞
imJm(βj)e

±imθ.

Jm(β) is the mth order Bessel function. Using these expansions, Eq.(2.13) be-
comes

Φr(t) = Γ

∞
∑

nj′=−∞

∞
∑

mj=−∞

n
∏

j′=1

n
∏

j=1

Jnj′
(βj′ )e

−Γt−iβj′sin(iωj′ t+αj′ )−iβ0t

×
∫

dtJmj
(βj)e

Γt+iβjsin(iωj t+αj)+iβ0t (2.14)

Applying the integration and letting j = j′ = 1, 2, . . . andmj , nj = ±1,±2 . . .

Φr(t) =
∞
∑

nj , νj=−∞

n
∏

j=1

Jnj
(βj)Jnj−νj (βj)

eiνjωjt+iνjαj

1 + iτ(β0 + νjωj)
, (2.15)

where νj = nj −mj. The real part of Φr is obtained in a similar manner.

Current density

The sheet current density can be determined from the relation

j(t) =
gsgv
A

∑

k

evkfk. (2.16)

The sheet area A = WL, with W the width. gs, gv are the spin and valley
degeneracies respectively. For aGNR,

j(t) =
gsgve

4π2

N
∑

s=1

∫

dkv(k, θs)f(k, θs,Φr). (2.17)

The velocity is defined as v(k) = ∂E/~∂k. In terms of the Fourier coeffi-
cients,

v(k, θ) =
iγ0l

~

∑

r 6=0

rErseirkl (2.18)

giving

j(t) = i

∞
∑

r=1

j0rΦr(t) + c.c (2.19)

with

j0r =
2gsgveγ0

πl~
∆θ

n
∑

s=1

rErsfrs, j∗0,r = −j0,−r.
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Substitute Φr in Eq.(2.19) to get

j(t) = i

∞
∑

r=1

j0r





∞
∑

nj , νj=−∞

n
∏

j=1

Jnj
(βj)Jnj−νj (βj)

eiνjωjt+iνjαj

1 + iτ(β0 + njωj)
+ c.c



 .

(2.20)
Note the r dependence of βj , β0 and the summation over the index. Using the
formalism by Litvinov and Manasson [14], eq.(2.20) can be put in a taylor-like
expansion of Ej . i.e

j(t) = jdc +
1

2

∑

j

Ej

∑

νj 6=0

σnjωj
eiνjωjt + c.c+ · · · , (2.21)

where

jdc =

∞
∑

r=1

j0r

∞
∑

nj=−∞

n
∏

j=1

J2
nj
(βj)

i+ β0τ + njωjτ

1 + [τ(β0 + njωj)]2
+ c.c (2.22)

is the differential dc conductivity (for νj = 0), and

σnjωj
=

2

Ej

∞
∑

r=1

j0r

∞
∑

nj=−∞

n
∏

j=1

Jnj
(βj)Jnj−νj (βj)

i+ β0τ + njωjτ

1 + [τ(β0 + njωj)]2
eiνjαj + c.c

(2.23)
is the large-signal dynamic nonlinear conductivity at νj harmonic with drive
frequency ωj .

3. Negative differential conductivity

3.1. Pure dc limit

To see immediately that E1.(2.22) demonstrates NDC, we consider a pure dc
limit where ωj → 0. The Bessel functions except the n = 0 term will vanish.
The differential conductivity σ(0) = limωj→0 ∂j/∂E0 becomes

σ(0) =

∞
∑

r=1

σ0r
elτ

~

1− (β0τ)
2

1 + (τβ0)2
, (3.1)

so that if β0 > τ−1, the differential conductivity is negative and NDC is manifest
in GNRs.

Electron dynamics may be come more complicated in the presence of high-
frequency components in addition to the static electric fields. High negative
differential conductivity thus may result in GNRs if an external drive force is
applied.
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3.2. Monoharmonics

If one component of an ac filed is applied, we take n = 1 and Eq.(2.22) simplifies
to

j =
∑

r

j0r

∞
∑

n=−∞
J2
n(β)

β0τ + nω1τ

1 + (β0τ + nωτ)2
, (3.2)

after dropping the subscripts on n. A plot of j versus E0 for ωτ << 1 is shown
in Fig.1 (left) for armchair ribbon and in Fig.1 (right) for zigzag ribbon,
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Fig 1. Negative differential conductivity for (left) armchair and (right) zigzag graphene
nanoribbons at different ac field amplitudes. ωτ = 0.1. The onset of NDC at low static
fields is at E0 ∼ E. It departs from this condition at high fields

3.3. Biharmonics

One can also allow the graphene to be subjected to two ac field components,
in that case we let j = 1, 2 in our general formalism. This case has been stud-
ied in literature, especially in [15] for superlattices. Eq.(2.23) then takes the
form

j = i

∞
∑

r=1

j0r

∞
∑

n1, n2=−∞

∞
∑

ν1, ν2=−∞
Jn1

(β1)Jn1−ν1(β1)Jn2
(β2)Jn2−ν2(β2)

× eiν1α1+iν2α2

1 + iτ(β0 + n1ω1 + n2ω2)
. (3.3)

We have eliminated the time dependence by averaging over the period of the
fields to find the time-independent current j. In the left hand side, we replace
〈j(t)〉 = j, and in the right hand side a delta function emerges which ensures
that ν1 = −ω2

ω1
ν2. If ω1 = ω2, then one must put α1 = 0 and α2 = α so

that ν1 = ν2. However, we shall generalized this to a case of commensurate
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frequencies. We exemplified the case by biharmonic having frequencies which
can be periodic ω2 = µω1 or non-periodic, ω2 6= µω1 with µ = 1, 2, . . .. These
two cases are studied in [17, 18] for semiconductor superlattices. Defining j0,r =
2gvgseγ0√
3~(n+1)a

∑n
s=1 rErsfrs, Eq.(3.3) assumes the form

j = i
∞
∑

r=1

j0,r

∞
∑

n1, ν2=−∞

Jn1
(β1)Jn1+µν2 (β1)Jn2

(β2)Jn2−ν2(β2)

1 + iτ(β0 + [n1 + µn2]ω1)
eiν2α. (3.4)

Simplifying further, we linearize with respect to one of the field amplitudes (say,
E2). For a week field β2 << 1, Jn(β) ≈ (β/2)2/n!, which allows us to take n2

(or n2 − ν2) = ±1 (or 0,±1). We obtain

j = i
∞
∑

r=1

j0,r

∞
∑

n1=−∞

J0(β2)
∑

n2=±1 Jn2
(β2)Jn1

(β1)Jn1+µn2
(β1)

1 + iτ(β0 + [n1 + µn2]ω1)
ein2α, (3.5)

with β1,2 = erlE1,2/~ω1,2. Where l =
√
3a/2 for armchair and l = a/2 for zigzag

graphene nanoribbons. Finally, the current density becomes

j = j0
elτ2

µ~
E2cosα

∞
∑

r=1

N
∑

s=1

r2Ersfrs

×
[ ∞

∑

n=−∞

β0τ + nωτ

1 + (β0τ + nωτ)2
Jn(rβ1) {Jn−µ(rβ1)− Jn+µ(rβ1)}

]

,(3.6)

which reduces to the monoharmonic case when µ = 0.
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−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

 E
0
 / E

cr

 j 
/ j

0

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 E
0
 / E

cr

 j 
/ j

0

 Armchair
 Zigzag

 Armchair
 Zigzag

Fig 2. Negative differential conductivity due to wave mixing of two ac field amplitudes. (left)
µ = 2 and (right) µ = 3. The parameters used are E1 = 0.2Ecr, E2 = Ecr and ωτ = 0.01.

The nature of the NDC is observed for a simultaneously varying harmonic field
and phase difference in a three dimensional plot shown in Fig.3
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Fig 3. NDC of AGNR for simultaneously varying ac field amplitude and phase shift.

4. Discussion

In Fig.1, normalized current density j/j0 is plotted against reduced static elec-
tric field E0/Ecr for aGNR (left) and zGNR (right) for an applied ac field. At
low fields up to E0(jmax), the quantum derivative of the j − E0 characteristic
yields a positive slope. A negative slope results for E0 > E0(jmax). The whole
of the region E0 > E0(jmax) gives what is called Negative Differential Con-
ductivity (NDC). A consequence of NDC in GNRs is a formation of electric
field domains that impedes a continuous motion of electric field waves and thus
blocks high frequency generation in these nanoribbons. NDC disappears quite
faster in aGNR as E → ∞ as compared to zGNR which is more rubust at this
limit.

The curves in Fig.2 demonstrate NDC, they are obtained at wave mixing of
two commensurate frequencies, ω2 = µω1. Fig.2 (left) µ = odd and Fig.2 (right)
µ = even. The onset of NDC in odd-harmonics occurs around E0 ∼ E1, and
in even-harmonics it starts at E0 ≤ E1. In both cases, as in the previous NDC
graphs, ωτ << 1.

The combined effect of phase shift and ac amplitude on NDC is depicted in
Fig.3. There are three peaks at low bias fields at points (E ∼ Ecr, α = 0),
(E ∼ Ecr, α = π) and (E ∼ Ecr, α = 2π). For now, it is not clear what these
crests and throughs represents, they might be associated with field domains
along some direction (for α = 0, 2π) and others along the opposite direction (for
α = π) or vice-versa.
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5. Conclusion

We have demonstrated that graphene nanoribbons exhibit NDC regions in its j−
E0 characteristics at low bias field when ωτ << 1. NDC is observed either in the
presence of bias field alone or by superimposing ac field amplitudes. For one ac
field, NDC occurs at ωτ ∼ 0.1. When two ac fields at commensurate frequencies
are applied, high-harmonic NDC emerge for both even and odd harmonics at
rather very low frequencies ωτ ∼ 0.01. The even-series gives pronounced high-
harmonic NDC than the odd-series. The presence of high-harmonic NDC means
that it is possible for high-frequency generation in graphene nanoribbons when
electric field domains are suppressed at high enough applied frequencies ωτ >> 1
and E0 > Ecr. We therefore suggest this approach for the study of terahertz
generation in graphene.
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