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Abstract

We consider the tight-binding approximation for the description of energy

bands of graphene, together with the standard Boltzmanns transport equa-

tion and constant relaxation time, an expression for the conductivity was

obtained. We predicted strong nonlinear effects in graphene which may be

useful for high frequency generation.

Keywords: Graphene, Mathematical model, Nonlinear effects, High Fre-

quency Radiation.

1. Introduction

Graphene was discovered by Novoselov et al in 2004 [1]- [3] and has since

attracted a great deal of interest due to its unique properties like mechani-

cal, electrical, thermal, etc arising from its highly symmetric two-dimensional

honeycomb-lattice structure [4, 5]. This makes graphene potentially appli-

cable in carbon-based nanoelectronics‘[6, 7]. The nonquadratic energy spec-
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trum of graphene allows it to exhibit nonlinear phenomena [8] and its non-

addivity property provides the mutual dependence of electron or hole motion

in orthogonal directions [9]. Several unique physical properties of graphene

have been studied both theoretically and experimentally [8]- [12].

Investigation into electronic properties of graphene has revealed that the

electron dispersion law is linear in momemtum near the Fermi points and

thereby causing the quasiparticles to behave like massless Dirac Fermions [12].

However, the tendency of graphene to absorb impurities on its surface and

interacts with the impurities electrons results in the formation of nonparabol-

icity of the energy band which makes the electronic properties of graphene

essentially nonlinear under moderate electric fields [13]. This nonlinearity

makes graphene to exhibit plethora of transport phenomena [12]- [20]. Un-

der different conditions of an external electric field, an electron in graphene is

predicted to reveal a variety of physical effects such as Bloch oscillations, self-

induced transparency, absolute negative conductance, etc. Electronic prop-

erties and electronic transport in graphene is the subject of many theoretical

papers [12]- [20]. Nevertheless, the electrodynamic properties of graphene is

worth further studying because it is the basis for developing carbon-based

devices. Using the kinetic transport equation, we shall in this work study

the effect of high frequency (hf) conductivity in graphene by following the

approaches of [21]- [26].

2. Theory

Proceeding as in references [21]- [26], we consider the motion of an electron

in the presence of high frequency electric field E(t). The electric field E(t)
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is directed along the graphene axis and the conductivity is derived using the

Boltzmann kinetic equations describing electron transport in graphene for

the distribution functions in the relaxation time approximation as follows:

∂fs
∂t

+ eE(t)
∂fa
∂p

=
F − fs
τ

(1)

∂fa
∂t

+ eE(t)
∂fs
∂p

=
−fa
τ

(2)

where e is the electron charge, p is the electron dynamical momentum, F is

the equilibrium distribution function and fs as well as fa the symmetric and

antisymmetric distribution functions respectively. Solving Eqs.(1) and (2) in

a constant electric field yields,

∂2f oa
∂ξ2

− χ2
of

o
a =

∂F

(eEaτ)∂ξ
(3)

where ξ2
o = π2

(eEaτ)2
and p = π

a
ξ.See [26]

Using ∂F
∂ξ

= ∂F
∂ε

∂ε
∂ξ

, the solution to Eq.(2) for the necessary boundary condi-

tions fa(−1) = fa(+1) = 0 is

f oa = ε
∂F

∂ε

eaEτ

(eaEτ)2 + 1
(4)

The spectrum of electrons in graphene is given by [24,25].

|ε(p)| = ±3γob

2h̄
|p− pF| (5)

where γ0 ≈ 2.7eV ,b = 0.142nm is the distance between the neighbouring

carbon atoms in the graphene. + and − signs are related to the conduction

and valence bands respectively. With pF as the constant quasimomentum
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corresponding to the particular Fermi point. The current density of the

mobile electron in the 1st Bz for graphene is given as [24, 25]

jx =
2e

(2πh̄)2

∫ ∫
vxf

o
ad

2p (6)

and the quasiclassical velocity vx(p) of an electron moving along the graphene

axis can be

vx(p) =
∂ε

∂p
=
a

π

∂ε

∂ξ
=
a

π
gradε (7)

and writing

d2p =
π

a
d2ξ =

π

a

ds

| a
π
gradε|

dE (8)

ds is the element of the length of the curve.

Substituting Eqs.(3),(6) and(7) into(5) we get,

jx = − e2

2π(h̄)2

Eτ

(eaEτ)2 + 1

∫
|ε|∂F
∂ε

dε (9)

Using (4), we obtain

jx =
8ln2

π(h̄)2

τe2kBTE

(ωBτ)2 + 1
(10)

and

σx =
8ln2

π(h̄)2

τe2kBT

(ωBτ)2 + 1
(11)

where ωBτ = eaEτ . See![26]

By linearizing Eqs. (1) for the perturbation

E(t) = (E + Eω,ke
−i(ωt+kx)), fs = f os + f 1

s e
−i(ωt+kx), fa = f 1

ae
−i(ωt+kx) (12)
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we obtain

∂2f 1
a

∂ξ2
− χ2

ωf
1
a = π2 (iωτ − 1)

(eaEτ)2
f oa
Eωk
E
− ∂2f oa

∂ξ2

Eωk
E

(13)

where

χ2
ω =
{1− 2iωτ − (ωτ)2}

(eaEτ)2
(14)

Using ∂F
∂ξ

= ∂F
∂ε

∂ε
∂ξ

, the solution to Eq(11) for the necessary boundary condi-

tions fa(−1) = fa(+1) = 0 is

f 1
a =

[
ε
∂F

∂ε

(
(eaEτ)

(eaEτ)2 + 1

)
Eωk
E

{
iωτ − 1− (eaEτ)2

(eaEτ)2 − (ωτ)2 + 1− 2iωτ

}]
(15)

Substituting Eqs.(12),(6)and(7) into(5) and using (4), we obtain we get,

jx = − e2

2π(h̄)2

(
(eaEτ)

(eaEτ)2 + 1

){
iωτ − 1− (eaEτ)2

(eaEτ)2 − (ωτ)2 + 1− 2iωτ

}
×
∫
|ε|∂F
∂ε

dε (16)

where
∫
|ε|∂F

∂ε
dε = KβT ln2 making Eqn.(16) yield

jx = −KβT ln2e2

2π(h̄)2

(
(eaEτ)

(eaEτ)2 + 1

){
iωτ − 1− (eaEτ)2

(eaEτ)2 − (ωτ)2 + 1− 2iωτ

}
(17)

σx(ω) = σo

{
iωτ − 1− (eaEτ)2

(ωBτ)2 − (ωτ)2 + 1− 2iωτ

}
(18)

where eaEτ = ωBτ and σo = 2ln2τe2kBT
π(h̄)2

ωBτ
(ωBτ)2+1

. See [26]

3. Results, Discussion and Conclusion

We present the results of a kinetic equation approach of a graphene sub-

ject to constant electric field E. The electric field E is directed along the
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graphene axis. Exact expression for the direct conductivity was obtained in

eq.(9). The nonlinearity is analyzed using the dependence of the normalized

conductivity jx as a function of E. . Figure 1 illustrates the dependence of

jx on E. The figure shows a linear dependence of jx on E at weak values

of E. As E increases, jx increases, and at a some value of E, jx reaches a

maximum value. Further increase in E results in the decrease of jx. The

slope of the curve is the dc differential conductivity, σx = djx/dE. See equa-

tion (10). If E ≈ 1, the Bloch frequency is in the terahertz frequency range

and if E > 1, σx is negative and therefore graphene demonstrates negative

differential conductivity (NDC). Figure 2 elucidates the graph of conductiv-

ity component (σx(ω))/σo obtained in Eq. (14) on the normalized frequency

ω/ωB . The dimensionless complex conductivity (σx)/σo depends strongly

and nonlinearly on the normalized frequency σ/ωB . We observed that the

real part of the complex conductivity will become more negative with in-

creasing frequency, until a resonance minimum occurs just before the Bloch

frequency ωBτ . This negative-conductivity resonance close to the Bloch fre-

quency makes the graphene an active medium for a Bloch oscillator without

domain instabilities induced by negative dc conductivity. In summary, using

the solution of the Boltzmann’s transport equation with constant relaxation

time τ approximation, we obtained an exact expression for the conductivity

of graphene. We noted a strong nonlinear effets which may be useful for the

generation of high frequemcy radiation.
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Figure 1: A plot of current density jx as a function of E in graphene for expression (9).

Figure 2: A plot of a normalized complex conductivity (σxω)/σ0 as a function of dimen-
sionless frequency ω/ωβ in graphene for expression (9) when ωβτ = 10.
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