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On a liquid drop ”falling” in a heavier miscible fluid
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We report a new type of drop instability, where the density difference between the drop and the
solvent is negative. We show that the drop falls inside the solvent down to a minimum height,
then fragmentation takes place and secondary droplets rise up to the surface. We have developed
a theoretical model that captures the essential of the phenomenon and predicts the correct scalings
for the rise-up time and the minimum height.
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In the recent years, the physics of liquid drops has
been faced with fundamental questions that are becom-
ing more and more relevant to practical agricultural and
industrial applications [1]. In particular, it seems such
fundamental relevance to the dynamics of the drops and
the interfaces are ruled by an interfacial surface tension
that would be related to the transient presence of ve-
locity gradients between the liquid of the drop and the
one composing the solvent [2]. Recently, we have demon-
strated that when a drop of liquid is deposited over the
surface of the same liquid, it falls down inside the sol-
vent because the energy associated to its surface tension
against air is instantaneously converted into kinetic en-
ergy. As a consequence, a very fast fluid injection takes
place as the drop touches the surface of the solvent [3, 4].
Universal scaling laws apply, relating the initial velocity
transferred at the injected drop to the minimum height
at which it stops inside the solvent [4].

FIG. 1: Experimental setup: a solid state laser beam (λ = 532
nm) is shone laterally onto the cell; fluorescence from the drop
is recorded by a CCD camera.

It is a well-known phenomenon that, when a liquid
drop falls inside a miscible fluid and the density differ-
ence between the drop and the solvent ∆ρ, is slightly
positive (the drop is heavier than the solvent), then the
drop fragments into smaller and smaller droplets [5]. At
longer times, the process is washed out by the diffusion of

the drop liquid into the solvent. Recently, we have shown
that this hydrodynamical instability is ruled by two non
dimensional numbers, the fragmentation number F and
the Schmidt number S [6, 8] and displays fractal proper-
ties in the statistics of the drop fragments [9].

Here, for the first time we report a set of experiments
performed in the case of negative ∆ρ (the drop is lighter
than the solvent) and we show that, despite the negative
sign of the density difference, the drop does indeed ”fall”
inside the solvent, at least initially, when a fast injection
takes place because of the almost instantaneous conver-
sion of surface energy into kinetic impulsion. When go-
ing inwards the solvent, the drop develops a vortex ring,
which expands and falls down until the initial impulsion
is dissipated by viscosity. When the ring stops, a new
instability takes place that leads to the fragmentation
of the ring into smaller droplets. This is a Rayleigh-
Taylor instability due to density difference between the
drop and the solvent [10]. When ∆ρ > 0 the drop frag-
ments continue their descent down inside the solvent, but
for ∆ρ < 0, the density difference being negative, an in-
version of velocity takes place and the drop fragments
rise up towards the surface of the solvent. Thus, the in-
stability is equivalent to a Rayleigh-Taylor instability but
with the sign of gravity reversed.

The experimental setup, shown in Fig.1, consists of
a glass cell with a base of 10x10 cm2 and 40 cm high,
mounted on a rigid metallic support. We have studied
the behavior of different fluids, namely the solvent was
made up of distilled and purified water doped at 10, 15,
25 % Glycerol and the drop was made up of distilled and
purified water with a Glycerol concentration varying in
between 0 and 25 %. The drop, which is formed at the
needle of a high precision Hamilton microsyringe, has a
volume V that can be adjusted from 1 to 10 µl, with
an accuracy of a few percents. Once formed, the drop is
deposited adiabatically, by means of a micrometric trans-
lation stage, on the free surface of the solvent. Side and
bottom views of the drop inside the solvent are recorded
by means of a CCD camera and a solid-state laser illu-
mination (λ = 532 nm). The drop is slightly doped with
Fluorescein at the purposes of visualization.

A typical behavior observed for a V = 2 µl drop doped
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FIG. 2: Frame assembly, showing the drop injection, the ring
formation and the fragment rise-up; a) t = 0.08 s, b) t = 0.20
s, c) t = 0.32 s, d) t = 0.44 s, e) t = 0.56 s, f) t = 0.68 s, g)
t = 0.80 s, h) t = 0.92 s, i) t = 1.04 s.

FIG. 3: Drop height h as a function of time for V = 4 µl;
∆ρ = a) 0.01325, b) 0.0265, c) 0.03975 and d) 0.04505 g/cm3.

at 15 % Glycerol and falling in a 25 % Glycerol doped
solvent (∆ρ = 0.053 g/cm3 ) is shown in the assembly
of Fig.2. The label in each frame corresponds to the
time sequencing, where the camera acquisition rate is of
25 frames/sec. We can distinguish the fast injection of

FIG. 4: Drop height h as a function of time for ∆ρ = 0.04505
g/cm3; V = a) 2, b) 4, c) 6 and d) 8 µl.

the drop, the ring formation, its undulation and the sub-
sequent fragmentation into four droplets, then rising-up
towards the free surface of the solvent. It is worth to note
also that, when the ring expands, it remains attached to
a convex membrane. In the case of positive ∆ρ a similar
phenomenon was also observed and called turban insta-
bility [6]. In that case the curvature of the membrane
was in the opposite direction with respect to the present
case. Note that the turban instability has been observed
also in the case of immiscible fluids [7].

We have performed several experiments by changing
the drop volume V and the density difference ∆ρ. For
each set of experiments we have recorded several movies
following the drop evolution and for each recorded movie
we have performed the following processing. We have
binarized all the frames by choosing a unique thresh-
old intensity and by checking that this one minimizes
the discontinuities between each frame and its succes-
sive. Then, on each frame we identify the center of
mass of the drop, we record its coordinates and we fol-
low its trajectory until the drop stops its descent and
starts to rise up breaking into fragments. At this point,
we choose only one fragment and follow its motion by
recording the coordinates of its center of mass. The evo-
lution of the longitudinal coordinate, h, of the center of
mass is plotted as a function of time for a fixed drop vol-
ume, V = 4 µl, and for different ∆ρ (Fig.3) and for a
fixed ∆ρ = 0.04505 g/cm3 and different drop volumes,
V = 2, 4, 6, 8 µl (Fig.4).

From Fig.3 and 4, we can see that, once the drop has
evolved into a vortex ring, it stops at a minimum height,
hmin, which is mainly ruled by the initial drop volume,
V . On the other hand, when fragmentation takes place,
the rise-up time for the secondary droplets mainly de-
pends on the density difference, ∆ρ, eventually going to
infinity for ∆ρ = 0. At small ∆ρ the rise-up time is
very long, while it shortens as ∆ρ increases. The drop
injection takes place even in the absence of density dif-
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ference because, the two fluids being miscible, there is an
”instantaneous” conversion of the energy associated to
surface tension into kinetic energy [3, 4]. Then, viscous
dissipation slows down the motion of the drop, which
asymptotically reaches the minimum height hmin.
We can describe the dynamical behavior of the drop by

writing a simple model that takes into accounts buoyancy
and viscous dissipation. The equation of motion reads

dv

dt
=

g∆ρ

ρ
− γ

ν

r2
v, (1)

with r = κ 3
√
V and γ, κ geometrical factors (γ = 9/2

and κ = 0.62 for a sphere [10]). The initial condition is
given by the injection of the drop, v(t = 0) = v0, where
v0 comes from the conversion of the drop surface tension
into kinetic translational and rotational energy

1

2
mv2

0
+

1

2
Iω2 = 4πσr2, (2)

with I = αmr2 the inertial momentum of the drop and
ω = βv0/r its frequency of rotation. If all the rotation is
converted into translation, i.e., there is no sliding, then
β = 1, otherwise β > 1. We obtain for the initial velocity
of the drop

v0 = −
√

6σ

(1 + αβ2)ρr
. (3)

By defining the viscous time, τν = r2/γν, we derive from
Eq.1 the drop asymptotic velocity, v∞, corresponding to
dv/dt = 0,

v∞ =
∆ρ

ρ
gτν . (4)

Integrating Eq.1 from v = v0 to v = 0 we obtain the drop
fall-down time, τd, which is the time taken by the drop
to stop

τd = τν ln(1−
v0
v∞

), (5)

and the minimum height, hmin, reached by the drop be-
fore rising-up

hmin = v∞τd + v0τν . (6)

As for the fragment rise-up time τu, if t ≫ τν it is
simply given by

τu = −hmin

v∞
=| v0

v∞
| τν − τd, (7)

so that the total elapsed time is τT =| v0/v∞ | τν . How-
ever, as we can see from Fig.2, the rising-up droplets are

fragments of the initial drop, so that the asymptotic ve-
locity to be used here has the same expression as before,
Eq.4, but with a volume V/n that is a fraction of the
initial one, where n is the number of fragments. If we
take into account this correction, we have that

τu = (τT − τd)n
2/3. (8)

FIG. 5: a) Drop fall-down time τd and b) rise-up time τu as
a function of ∆ρ; V = 2 µl circles, V = 4 µl triangles, V = 6
µl stars, V = 8 µl crosses. Lines are the theoretical curves
for V = 5 µl.

We show in Fig.5a and Fig.5b, respectively, the drop
fall-down time τd, and rise-up time τu, as a function of
∆ρ. From now on, we fix the parameters of the model
to αβ2 = 4, γ = 6.67 and κ = 0.56. We plot in Fig.5a
the theoretical prediction for τd, as in Eq.5. This curve
fits quite well the data for ∆ρ > 0.02 g/cm3 but presents
large deviations for lower values of ∆ρ. Indeed, when
∆ρ → 0 the logarithmic divergence does not take into
account the dissipation due to the increasing radius of
the vortex ring. To include such an effect a more refined
model should be developed in order to describe the dy-
namics of the ring formation. As for the rise-up time
τu, we have plotted in Fig.5b the experimental data by
normalizing each value at n2/3, where n is the number
of secondary droplets after the fragmentation has taken
place. By using the expression in Eq.7, we obtain a good
fit of all the data. In Fig.5b we report the curve for V = 5
µl, the curves for the other volumes being close to this
one.
The minimum height hmin reached by the drop before

rising-up is plotted in Fig.6 as a function of ∆ρ, together
with the theoretical curves, Eq.6, for V = 2, 4, 6, 8 µl. We
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can see that the theoretical curves are in good agreement
with the experimental data. Note that, in the limit of the
experimental error, for ∆ρ = 0 we obtain the h ∝ V

1

2

scaling, in agreement with the previously reported law
[4].

FIG. 6: Minimum drop height hmin as a function of ∆ρ; V =
2 µl circles, V = 4 µl triangles, V = 6 µl stars, V = 8 µl
crosses.

FIG. 7: Reduced h− t profiles for the all the experiments in
25% Gly doped solvent.

Finally, we rescale all the h − t data by hmin and τT ,
and we plot the reduced profiles in Fig.7. We can see
that all the drops approximately follow the same evolu-
tion law. The early stages of the drop injection are very
similar to those observed at ∆ρ = 0: the drop falls very
fast inside the solvent and develops a ring. Then, the
ring stops because of dissipation of the initial impulsion.
At this point, the drop has reached the minimum height
hmin, where a velocity reversal occurs and where a new
instability takes place leading to the fragmentation of the
ring into smaller droplets. Being ∆ρ < 0, the secondary
droplets rise-up towards the surface because of buoyancy.
This dynamical regime corresponds to the linear portions
of the h− t profiles just after hmin. Viscous dissipation
slows down the motion of the fragments, but in this dy-

namical regime buoyancy is dominant.
At later times, when fragments approach the surface,

we observe deviations from the linear dependence of h
vs t. Indeed, droplets feel the presence of the boundary
and behave as secondary vortex rings, each one colliding
over a wall with a longitudinal velocity component [11].
To describe the interaction of the vortex ring with the
wall we can replace the wall by the specular image of
the vortex ring, this one having opposite circulation with
respect to the incoming ring. Because of this interaction,
the vortex ring expands and slows down, until, at later
times, diffusion takes over the whole process.

In conclusion, we have reported a new type of drop
instability, where secondary droplets rise up to the sur-
face because of the negative density difference between
the drop and the solvent. We have developed a theo-
retical model that takes into account the initial conver-
sion of surface tension into kinetic energy, and we show
that buoyancy and viscous dissipation rule the dynamics.
Even though simplified, the model captures the essential
of the phenomenon and predicts the correct scalings for
the rise-up time and the minimum height reached by the
drop inside the solvent.
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