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Abstract. We report on a theoretical investigation of carbon nanotubes subjected to a pure alternating
electric field consisting of two phase-shifted harmonic fields of frequencies ω1 = Ω and ω2 = 2Ω (harmonic
mixing) without any direct current bias. We employed a tight-binding approximation for the description of
the energy bands of the carbon nanotubes and the Boltzmann transport equation with constant relaxation
time approximation. The results are compared to that of a superlattice under similar conditions. The
results indicate a direct current generation by the carbon nanotubes due to the harmonic mixing. The
described effect is in essence, due to the nonlinearity associated with the non-parabolicity of the electron
energy band, which is greater in the carbon nanotubes than the superlattices. The strong effect observed
in the carbon nanotubes is attributed to the stark components and the specific dispersion law inherent in
hexagonal crystalline structure of the carbon nanotubes.

1 Introduction

Carbon nanotube (CNT) is a cylindrical molecular struc-
ture with nanometer diameter and micrometer length [1].
Since the discovery by Iijima in 1991 [2], the interest
in these quasi-one-dimensional monomolecular structures
has grown exponentially, mainly due to their unique ther-
mal, chemical and physical properties [3]. These properties
depend on the fundamental indices (n,m) of the CNTs.
The indices (n,m) determine the diameter and the chiral
angle of the CNT. As n and m vary, the conduction ranges
from metallic to semiconducting [4], with an inverse diam-
eter dependent band gap of �1 eV [5].

The study of CNTs is now an active research area,
which could lead to the development of technologically
advanced devices [6]. CNTs show strong nonlinear re-
sponse to high frequency (HF) fields governed by a strong
nonparabolic dispersion law [6]. Therefore CNTs can be
used for generation of harmonics of electromagnetic ra-
diation [7–10]. However, to the best of our knowledge,
rectification of sinusoidal wave with two coherent waves
with commensurate frequencies has not been investigated
in CNTs.

In fact several mechanisms of nonlinearity could be re-
sponsible for the wave mixing in semiconductors [11–14].
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Important among them is the heating mechanism where
the nonlinearity is related to the dependence of the relax-
ation constant on the electric field [13–17]. Goychuk and
Hänggi [18] have suggested another scheme of quantum
rectification using wave mixing of an alternating electric
field and its second harmonic in a single miniband su-
perlattice (SL). Their approach is based on the theory of
quantum ratchets. The necessary conditions needed to ob-
serve a dc behavior in such a system included a dissipative
(quantum noise) and an extended periodic system [18].

In this paper we focus on the mechanism of nonlin-
earity due to the nonparabolocity of the electron energy
spectrum in SLs and CNTs. In superlattices, the theory
of wave mixing based on the solution of the Boltzmann
equation has been studied [19–24]. However, none of these
reports considered the case of a time dependent electric
field, E(t) = E1 cosω1t + E2 cos(ω2t + θ). Mensah et al.
were the first to report on the use of such alternating cur-
rent in SLs [25].

In this work, we investigate for the first time the pos-
sibility of the generation of a direct current (dc) in CNTs
due to a wave mixing of two coherent electromagnetic ra-
diations of commensurate frequencies. We compared the
dc generation in a zigzag CNT, an armchair CNT and a
SL, subjected to an ac field with its second harmonic. We
observed stronger effects in the CNTs than in the SL, due
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to the strong non-parabolicity of the electron energy band
in the CNTs.

This work is organized as follows: Section 1 is the in-
troduction, we establish the theory and solution of the
problem in Section 2 and discuss the results and draw
conclusions in Section 3.

2 Theory

We consider an undoped single-wall CNT subjected to two
harmonic fields (harmonic mixing),

E(t) = E1 cosω1t + E2 cos(ω2t + θ). (1)

We use the semiclassical approximation in which
π-electrons are considered as classical particles with the
dispersion law extracted from quantum theory. Consid-
ering the hexagonal crystalline structure of zigzag CNTs
with tight binding approximation, the dispersion relation
is given as [3]:

ε (sΔpϕ, pz) ≡ εs(pz)

= ±γ0

[
1 + 4 cos(apz) cos

(
a√
3
sΔpϕ

)

+4 cos2
(

a√
3
sΔpϕ

)]1/2

. (2)

Here γ0 ∼ 3.0 eV is the overlapping integral, pz is the
axial component of quasimomentum, Δpϕ is the trans-
verse quasimomentum level spacing and s is an inte-
ger. The expression for a in equation (2) is given as
a = 3b/2� with the C-C bond length b = 0.142 nm
and � = h/2π is the Plank’s constant. The – and +
signs correspond to the valence and conduction bands,
respectively. Due to the transverse quantization of the
quasi-momentum, its transverse component can take n
discrete values, pϕ = sΔpϕ = π

√
3s/an (s = 1 . . . , n).

Unlike transverse quasimomentum pϕ(pϕ), the axial quasi-
momentum pz is assumed to vary continuously within the
range 0 ≤ pz ≤ 2π/a, which corresponds to the model of
infinitely long CNT (L = ∞). This model is applicable
to the case under consideration because of the restriction
to the temperatures and/or voltages well above the level
spacing [3], i.e. kBT > εC , ΔεkBT > εC , Δε, where kB is
the Boltzmann constant, T is the temperature, εC is the
charging energy. The energy level spacing Δε is given by
Δε = π�υF /L, where υF is the Fermi velocity and L is
the carbon nanotube length [3].

We employ the Boltzmann equation with a single re-
laxation time approximation and follow the procedure of
Mensah et al. [26],

∂f (p)
∂t

+ eE(t)
∂f (p)
∂P

= − [f (p) − f0 (p)]
τ

(3)

where e is the electron charge, f0(p) is the equilibrium
distribution function, f(p, t) is the distribution function
at any time (t), and τ is the relaxation time. The elec-
tric field E(t) is applied along the CNT axis. The relax-
ation term, is assumed to be constant and describes the

effects of the dominant type of scattering (e.g. electron-
phonon and electron-twistons) [3]. Expanding the distri-
bution functions, f0(p) and f(p, t) in Fourier series,

f0 (p) = Δpϕ

n∑
s=1

δ (pϕ − sΔpϕ)
∑
r �=0

frse
iarpz (4)

and

f (p, t) = Δpϕ

n∑
s=1

δ (pϕ − sΔpϕ)
∑
r �=0

frse
iarpz Øv (t) (5)

where δ(x) is the Dirac delta function, frs is the coef-
ficient of the Fourier series and Øv(t) is the factor by
which the Fourier transform of the nonequilibrium dis-
tribution function differs from its equilibrium distribution
counterpart. The equilibrium distribution function f0(p)
can be expanded in the analogous series with coefficients
as follows:

frs =
a

2π

2π
a∫

0

e−iarpz

1 + exp (εs(pz)/kBT )
dpz . (6)

Substituting equations (4) and (5) into (3), and solving
with equation (1) we obtain:

Øυ (t) =
∞∑

k1,k2=−∞

∞∑
υ1,υ2=−∞

Jk1 (rβ1)Jk2 (rβ2)

× Jk1+υ1 (rβ1)Jk2+υ2 (rβ2)

×
(

(1 − i (k1ω1 + k2ω2) τ)
1 + ((k1ω1 + k2ω2) τ)2

)

× {
cos (υ1ω1t + υ2 (ω2t + θ))

− isin (υ1ω1t + υ2 (ω2t + θ))
}

(7)

where � = 1, β1 = eaE1/ω1, β2 = eaE2/ω2 and Jk(β)
is the Bessel function of the kth order. We determine the
surface current density as:

jz =
2e

(2π�)2

∫∫
f (p, t)υz (p) d2p,

or

jz =
2e

(2π�)2

n∑
s=1

2π
a∫

0

f (pz, sΔpϕ, Øυ (t))υz (pz, sΔpϕ) dpz.

(8)
The integration is taken over the first Brillouin zone. We
consider the relation υz(pz , sΔpϕ) = ∂εz/pz and repre-
sent εz(pz)/γ0 by Fourier series with coefficients εrs de-
fined similarly as in equation (6). Then, substituting equa-
tions (5) and (7) into (8) and linearizing with respect to
E2 using J±1(β2) ≈ ±β2/2, J0(β2) ≈ 1−(

β2
2/4

)
and then
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Fig. 1. jz/j0 vs. β1 for Ωτ = 0.3 (•), Ωτ = 0.5 (�), Ωτ = 0.9 (�), Ωτ = 1.0 (∗) and Ωτ = 2.0 (�) for (a) a zigzag CNT, (b) an
armchair CNT and (c) superlattice [20,21]. (d) A comparison of jz/j0 vs. β1 for Ωτ = 2 for a zigzag CNT (——), an armchair
CNT (——–) and superlattice (— - —).

averaging the result with respect to time t, we obtain the
dc due to ω1 = Ω and ω2 = 2Ω as follows,

jz =
2e2γ0a√

3�nb
E2 cos θ

∞∑
r=1

r2

×
∞∑

k=−∞

kJk (rβ1)Jk−2 (rβ1)

1 + (kΩτ)2

n∑
s=1

frsεrs. (9)

Superlattices are characterized by the dispersion law
ε (p) = Δ

2

[
1 − cos

(
pd
�

)]
, with Δ as the band width, p is

the momentum of the electron along the SLs axis, d is
the spatial period of the SLs and � is the Planck’s con-
stant. Applying the above method to this dispersion law,
we obtained the expression,

jz = σ0E2 cos θ

∞∑
k=−∞

kJk (β1)Jk−2 (β1)

1 + (kΩτ)2
. (10)

Comparing (9) and (10), it is evident that the behav-
ior of the dc of the CNTs is strongly influenced by the
presence of the high stark components (i.e., the summa-
tion over r) and the specific dispersion law inherent in
the hexagonal crystalline structure that make the CNTs
highly nonlinear.

3 Results, discussion and conclusion

We discuss the sinusoidal rectification by CNTs subjected
to an electric field with two frequencies ω1 = Ω and
ω2 = 2Ω using the solution to the Boltzmann’s trans-
port equation (9). In Figure 1 we show the graphs of

the normalized current density (jz/j0) as a function of
β1 (β1 = eaE1/ω1) for zc = (Ωτ ) = 0.3, 0.5, 0.9, 1.0
and 2.0 for a zigzag CNT (Fig. 1a), an armchair CNT
(Fig. 1b) and a SL (Fig. 1c). First, we discuss the lower
region of β1. As β1 increases, the normalized current den-
sity (jz/j0) decreases and reaches a minimum value at the
critical amplitude, βmin

1 . Further increase in β1 beyond
the critical amplitude increases the current density. The
βmin

1 and the peak intensity decrease simultaneously with
increasing zc (i.e., increasing Ω). This is observed in all
three cases: the zigzag CNT (Fig. 1a), the armchair CNT
(Fig. 1b) and the superlattice (Fig. 1c).

Second, the behavior of the normalized current density
for the superlattice (Fig. 1c) is monotonic for all zc values:
zc = 0.3, 0.5, 0.9, 1.0 and 2.0. Such monotonic behavior is
a characteristic of rectification. However, the normalized
current density versus β1 of the CNTs exhibits oscillations
upon increasing β1 beyond βmin

1 (Figs. 1a and 1b). The
intensity of the oscillations diminish with increasing zc

(increasing Ω) and almost vanishes at zc = 2. In Fig-
ure 1d we compare the normalized current density of the
SL to that of the CNTs for zc = 2. It is worth empha-
sizing two important observations in Figure 1d: (1) the
critical amplitude (βmin

1 ) of the CNTs occurs earlier in
the normalized current density characteristics (zc ≈ 0.5)
than that of the SL (zc =≈ 2), i.e., the frequency is four
times smaller in the CNTs than in the SL, and (2) the
intensity at βmin

1 is an order of magnitude higher in the
CNTs than in the SL, which is quite substantial. This is
attributed to the higher density of states of conduction
electrons in the CNTs compared to the SL. Furthermore,
the nonlinearity in the CNTs structure is determined by
the high stark components (summation with respect to r
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Fig. 2. A plot of jz/j0 as a function of β1 for zc = Ωτ = 2 for a
zigzag CNT (——), an armchair CNT (- - - - -) and superlattice
(— - —) when the phase shift θ lies between π

2
and 3π

2
.

Fig. 3. A comparison of jz/j0 versus Ωτ for β1 = 0.3 (•),
β1 = 0.5 (- - - -), β1 = 0.9 (✚), β1 = 1.0 (o) and β1 = 2.0 (✖).

in Eq. (9)) and the specific dispersion law inherent in
hexagonal crystalline structure. These are absent in the
SL (Eq. (10)). We observed an inversion in the current
density versus β1 characteristics when the phase shift θ
lies between π

2 and 3π
2 . This is shown in Figure 2 for the

zigzag CNT, the armchair CNT and the SL for zc = 2.
Shown in Figure 3 is a comparison of a plot of current
density (jz/j0) as a function of (Ωτ) for β1 = 0.3, 0.5,
0.9, 1.0 and 2.0. The intensity of the current density in-
creases with increasing β1, whereas the position decreases
with increasing β1. It is worthwhile to note that Ωτ can be
used to determine the relaxation time, τ of the electrons
in the CNTs. For example, τ ≈ 1/Ω, knowing Ω one can
determine τ . On the other hand, for a typical value for τ
of 10−12 s the frequency Ω/2π would be ∼1.5 THz.

In conclusion, we have used the Boltzmann transport
equation with constant relaxation time to analyze CNTs
and SLs subjected to pure alternating current consisting of
two phase-shifted harmonic fields of frequencies ω1 = Ω
and ω2 = 2Ω (harmonic mixing), without any dc bias.
We observed a direct current generation due to the har-
monic mixing. The intensity of the current density is an

order of magnitude higher in the CNTs than in the SL and
occurred at a frequency one-forth of that of the SL. We
attribute these characteristics in CNTs to the high den-
sity of states of conduction electrons in carbon nanotubes
and the dispersion law of the hexagonal crystalline struc-
ture. The rectification is a function of both the frequency
and the stark components. Such method could be used to
generate terahertz radiation as well as to determine the
relaxation time of the carriers in the CNTs.
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