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Surface tension effects in the zero gravity inflow of a drop into
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Abstract. As a drop of fluid is deposited on the surface of a miscible fluid (that we call the solvent), it
undergoes a strong pulling due to its surface rupture and it acquires a kinetic energy independently of
gravity. For the drop and the solvent being of the same fluid we observe a drop injection at an initial
velocity which scales as the square root of the surface tension of the drop against air. Once injected, the
drop develops a transverse instability giving rise to an expanding ring. Viscosity terminates the process
and stops the ring. We show that the final ring height follows a scaling law whereas two asymptotical
scaling regimes can be identified for the ring radius.

PACS. 47.20.-k Hydrodynamic stability – 68.10.-m Fluid surfaces and fluid-fluid interfaces

A century after the first report by Thomson [1], the
problem of a drop falling in a lighter miscible fluid has
been recently reconsidered [2], showing that the pro-
cess of the drop break-up is essentially ruled by two
nondimensional numbers: the fragmentation number, F =
g∆ρV/µD, and the Schmidt number, Sc = ν/D, where
g is the gravity acceleration, ∆ρ the density difference
between the drop and the solvent, V the drop volume,
ν = µ/ρ the kinematic viscosity, ρ the solvent density and
D the diffusion constant of the drop into the solvent.

Notice that F and Sc are, respectively, the analogous
of the Rayleigh and Prandtl number in convective insta-
bilities, with inertia coming from the density difference
and dissipation due to viscosity and diffusion of the con-
centration gradient. Even if this description in terms of
balance between inertia and dissipation has caught some
of the essential features of the phenomenon, such as its
multifractal nature [3], many questions still remain unan-
swered.

For example, the fact that the process of break-up is
not, in general, observed for immiscible fluids still has no
clear explanation. Actually, a break-up into two fragments
has been recently observed in one experiment with two im-
miscible fluids [4], but this observation requires the drop
being loaded with some surfactant and travelling such
a long distance as 2 m. It is clear that surface tension
plays some important role which has never been addressed
before and, even in the case of miscible fluids, it is

a I.N.L.N, U.M.R., C.N.R.S, Universit de Nice-Sophia An-
tipolis, 1361 Route des Lucioles, 06500 Valbonne, France

b e-mail: pampa@ino.it
c Phys. Dept., University of Cape Coast, Ghana
d Also Phys. Dept., University of Florence, Italy

reasonable to ask whether or not we should consider some
sort of transient surface tension [5].

Moreover, the hydrodynamics of the process is not yet
resolved. The complexity of the problem arises from the
simultaneous presence of two hydrodynamic instabilities,
Kelvin-Helmoltz (KH) and Rayleigh-Taylor (RT), due, re-
spectively, to the presence of a velocity gradient and of
a density difference. We infer from the experimental ob-
servations that the KH instability is predominant in the
earlier stages of the process, when the drop, injected into
the solvent, develops a vortex which expands horizontally
into a ring. Once the ring developed, RT starts to act at
the interface between the ring and the solvent, where an
undulation begins to be amplified until a break-up into
secondary droplets takes place. The process can replicate
itself if the velocity gradient and the density difference
are still large enough for the fragmentation number to be
greater than its critical value [2]. Eventually, the process
stops as viscous dissipation and concentration diffusion
overcome the KH and RT mechanisms.

In this paper, we report experiments done at zero den-
sity difference, that is, for the drop and the solvent being of
the same fluid. The interest of our observations is twofold.
First, getting away of RT we are able to investigate un-
ambiguously the early stage of the process, that is, the
ring formation. Then, we show for the first time that the
process of drop injection is strongly related to the initial
surface tension of the drop against air and that the drop
falls into the solvent not because of gravity but because
of a strong energy release coming from the rupture of an
interface.

The experimental setup consists of a glass cell with a
base of 7 × 7 cm2 and 20 cm high, mounted on a rigid
metallic support. On the top of the cell we mount a
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Fig. 1. Side views of the process of drop injection (water into water). The drop volume is 1 µl. The four pairs of images
correspond to different events. Each pair represents two successive frames, the lower is 20 ms after the upper one. Comparing
the drop size with the distance travelled by the drop we get an initial velocity of roughly 10 cm/s. Notice that two successive
frames are superposed in the last two images.

calibrated microsyringe to release the drops. Drop volumes
from 0.1 to 50 µl are obtained by using Hamilton microsy-
ringes covering different volume ranges, so that the volume
uncertainty is always of the order of a few percents. For
each volume range, the syringe needle has an edge with a
circular section, the diameter of which is sufficiently large
to sustain a pending drop [6]. Notice that in this condi-
tion the weight of the drop is balanced by the adhesion of
the fluid to the needle walls, so that we can consider that
gravity is not playing any role in the whole process. Once
the drop is formed at the edge of the needle, by means of a
micrometric translation stage, we deposit it with adiabat-
ically zero velocity on the free surface of the solvent. The
drop is doped with a small amount of sodium fluorescein
dye (10−8 mol/l) and is visualized by illuminating the cell
with a collimated and expanded argon laser beam. Two
CCD cameras are used to register the drop, one camera
recording the sideview and the other one recording, from
the bottom of the cell, the transverse section. The amount
of fluorescein dye is sufficiently low in order not to alter
the fluid properties and the dimensions of the cell are large
enough in order not to influence the drop dynamics [7].

In Figure 1 we show a few lateral images of a water
drop entering water. The process of injection is very fast
and the CCD repetition rate (40 ms) does not permit to
follow it. In order to catch the essential features of the
process, we set the integration time of the CCD to the
minimum available for our system, that is 50 µs, and we
record images for different events of drop injection, the ini-
tial time of each record being different and hazardous at
each shot. Then, we extract from the collection of images
four successive stages that we show in Figure 1. Looking
at the images, we can see that the injection gives rise to
a rapid jet incoming from the “point” of contact between
the drop and the solvent. The drop fluid enters the solvent
through the jet and rolls up into a vortex ring. Our pic-
tures resemble those relative to a falling drop and already
reported by ourselves (see [2]) and by other authors [8].

However, this is the first evidence of such a phenomenon
for a drop deposited on the fluid surface with zero velocity.

It is this almost instantaneous process of injection that
transfers to the drop its initial velocity. Actually, the two
fluids being miscible, we can consider that, as soon as the
drop touches the solvent surface, a rupture of the drop
interface takes place and the energy associated with the
interface rupture is converted into kinetic energy. A trans-
verse instability starts to develop almost instantaneously.
Indeed, the fluid jet, because of viscous friction, enrolls
onto itself giving rise to a vortex ring. The rotational mo-
tion of the fluid induces a transverse component of velocity
and the ring expands horizontally while travelling down-
wards. When the kinetic energy is completely dissipated
by viscous processes, the ring stops and starts to fade away
because of diffusion.

We can use a simple dimensional argument to predict
the height h at which the ring stops. By the energy balance
σr2 = 1

6ρr
3v2

0, between the surface energy 4πσr2 and the

kinetic energy 4
3πr

3ρ
v2
0
2 , where σ is the surface tension

of the drop against air and r is the initial drop radius,
we find the velocity v0 that is transferred to the drop
fluid at the instant of injection. Once acquired, the initial
velocity v0 =

√
6σ/ρr is dissipated by viscous processes.

We account for dissipation through the Stokes law, so that
v̇ = −γνv/r2, where γ is a shape factor (γ = 6π for a
rigid sphere) [9]. Integrating the Stokes law yields v(t) =
v0e−γ

ν
r2
t and the maximum height h reached by the drop

is h =
∫∞

0
v(t)dt = v0r

2

γν = v0
γ τν , where τν = r2/ν is the

viscous time scale.
Substituting the expression for v0 and considering that

r ∝ V
1
3 , where V is the initial drop volume, h can be

rewritten as
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1
γ

√
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ρν2
V

1
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1
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Fig. 2. Lateral and transverse image of the ring stop.

where we have included in γ all the geometric form fac-
tors and called lν ≡ ρν2/σ a viscous length scale. From
now on, we convene to skip numerical factor, since we are
interested in scaling relations.

In fact, for a non uniform velocity we should account
also for the Basset term [10]. However, the ratio of that
term to the Stokes term scales as r/

√
νt and therefore it is

negligible for times longer than τν , in our case around 1s.
As we go to long times to evaluate the maximum height
h, the Basset correction does not modify equation (1) in
an appreciable way.

In order to test this prediction, we perform several ex-
periments by using mixtures of distilled water and glycerin
at different concentrations. For each fluid mixture and ini-
tial drop volume, we register on a videorecorder the entire
process, from the drop injection until the ring stop and
the onset of diffusion. The lateral and transverse images
are combined through a video mixer so that we can follow
on the same screen the vertical motion of the drop and
the ring formation. By analysing the video tapes, we can
catch the images corresponding to the ring stop. On these
images, we measure the vertical height h reached by the
ring and its radius R (Fig. 2). R is measured as the mean
between the inner and the outer radius of the annulus.
After each set of measurements, the optical magnification
factors are evaluated by recording an image with a mil-
limetric target immersed into the cell and one attached
onto the side of the cell. Correspondingly, h and R are
then normalized.

In Figure 3 we report the measured height h as a func-
tion of the initial drop volume V for different fluid compo-
sitions, that is, 0, 10, 20, 35 and 52% of glycerin. For each
fluid composition, l−1

ν = σ/ρν2 is evaluated by substitut-
ing for σ, ρ and ν the values tabulated in the current liter-
ature [11]. By choosing a reference temperature of 20 ◦C,
which is the room temperature at which we perform the
experiments, l−1

ν results to be equal respectively to 72.4,

Fig. 3. h as a function of the initial drop volume V for different
fluid compositions; empty circles: pure water, stars: 10% glyc-
erin in water (Gly), diamonds: 20% Gly, triangles: 35% Gly,
squares: 52% Gly, filled circles: pure ethanol.

43.4, 24.9, 9.2 and 2.2 × 104 cm−1 for 0, 10, 20, 35 and
52% of glycerin. The kinematic viscosity is respectively
ν = 1.0, 1.3, 1.7, 2.7 and 5.3 × 10−2 cm2/s. The best fit
lines are obtained by inserting into equation (1) the above
values for the fluid parameters and by adjusting the geo-
metric factor γ = 15± 1.

In order to have a further verification of the validity
of our description, we perform an experiment by using
ethanol as the fluid for the drop and the solvent. In this
case, even though the viscosity is lower than the water
viscosity, we expect the ring to stop at a smaller h be-
cause the surface tension has also been strongly reduced.
Unfortunately, we were able to prepare ethanol drops only
for a few volumes because of electrostatic problems on the
metallic needles. The ethanol having a polar molecule, the
metallic needles produce electrostatic forces and the drop
remains partially attached at the needle surface; in or-
der to avoid this problem, we had to use a plastic syringe
which did not allow to cover a wide range of volumes. How-
ever, for the three measured volumes, the data fit quite
well our scheme and are well reproduced by equation (1),
once we set `−1

ν = 12.5 × 104 cm−1, accordingly to the
values tabulated for ethanol.

For the same sets of experiments, we report in Figure 4
the measured height R as a function of the initial drop
volume V . Two distinct scaling regions can be observed,
depending on the volume and viscosity. For small volumes
and large viscosities the exponent of the power law fitting
the data is close to 2/3 whereas for larger volumes and
smaller viscosities data are fit by a 1/3 exponent. More-
over, in this latter case R seems not to depend on the fluid
parameters but only on the initial drop volume. As it can
be seen in Figure 4, the 1/3 and 2/3 scalings correspond
to two asymptotic behaviors, the separation between them
depending on the fluid parameters.

We can qualitatively justify the two asymptotic behav-
iors on the basis of a dimensional argument. The process
of drop injection gives rise to a vortical motion of the
fluid. The vortex ring transfers part of the initial vertical
velocity v0 in the horizontal direction giving rise to a
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Fig. 4. R as a function of the initial drop volume V for different
fluid compositions; empty circles: pure water, stars: 10% Gly,
diamonds: 20% Gly, triangles: 35% Gly, squares: 52% Gly. Solid
lines have two slopes, namely, 2/3 and 1/3. Each separate data
set displays a smooth passage from 2/3 to 1/3 slope as V
increases.

transverse component of velocity, v⊥. Once acquired, the
horizontal velocity is dissipated by viscosity as the ver-
tical velocity and, because of energy conservation, at the
same dissipation rate 1/τν. Therefore, the final ring radius
should behave as R ' v⊥τν = v⊥r2/ν.

We sketch in qualitative terms the sequence of events.
As the spherical drop is injected into the quiescent fluid
with a velocity v0, its border starts rotating with respect
to the center with the initial velocity v0, as discussed in
the first paper of [2]. Indeed, high friction means that
there is a total transfer from vertical to vortical velocity.
The initial acceleration of the vortical motion is given by
a = v2

0/r; therefore the radial velocity of the vortex built
over a characteristic time τν is given by v⊥ ' aτν = v2

0
r τν .

It then results v⊥ ' σ/ρν and R ' r2/lν = V 2/3/lν ,
which corresponds to the 2/3 scaling observed for small
volumes and large viscosities. On the other hand, if the
viscosity is small or the volume is large the rate of the
vortex rotation is reduced. Indeed, in this case the bound-
ary layer thickness δ = r(Re)−

1
2 = r( ν

v0r
)

1
2 (see [9], p. 101)

shrinks and hence the transfer from initial velocity v0 to
vortical velocity veff implies a reduction factor δ/r, that is,
veff = v0δ/r. Hence v⊥ = v2

eff
r τδ where τδ = δ2/ν is the vis-

cous time along the length δ. It follows v⊥ = ν/r, so that
R ' v⊥τν = r = V 1/3. Thus, the V 1/3 law describes the
region characterized by small viscosity and large volumes
(see pure water).

In conclusion, we have shown that the surface tension
σ of the drop against air plays a fundamental role in the
initial stage of the dynamics of a drop falling in a miscible
fluid. For zero density difference between the drop and the
solvent, we have demonstrated that the velocity at which
the drop enters the fluid is proportional to

√
σ and we have

identified a dissipation length lν = ρν2/σ which permits
to rescale the data for h and R to universal power law
behaviors.

Notice that the mechanism of drop injection that we
have described here is a general one. As long as the two
fluid are miscible, it is this mechanism that governs the
first stages of the falling drop dynamics, independently of
the density difference between drop and solvent. Indeed,
we performed some preliminary experiments in the case
of a negative density difference and we observed the drop
“falling” into the solvent because of the injection. Notice
that in the case of immiscible fluids and negative density
difference, a drop deposited on the solvent surface under-
goes a spreading over this surface [12]. Notice also, that, in
the case of positive density difference and immiscible flu-
ids, the absence (or the reduction) of the injection could
explain the absence of the transverse instability [1] (or the
difficulty to observe it [4]).

We are greatly indebted to S. Fauve for stimulating discus-
sions and precious suggestions. We gratefully acknowledge S.
Kumar for having brought to our attention some of the refer-
ences herein and we thank P. Bianchi for technical assistance
in building the cell.
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