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Abstract

A theoretical analysis on the polarization effects of a light beam propagating in a birefr igent

single-mode fiber is presented. We derive a system of differential equations representing the

evolution of Stokes parameters and illustrate their application to polarization effects in a straight

birefringent single mode optical fiber. The solutions to the set of equations are obtained using

specifically the methods of the unified formalism for polarization optics which adopt the use of

the Stokes-Mueller equation and the Lorentz group to model polarization phenomena in media

such as optical fibers. The analytical results presented using this approach are identical to

results obtained from other conventional methods. We observe the characteristic exponential

decrease in the total intensity of the input light due to atteuation by the fiber.



1 INTRODUCTION

The evolution of the state of polarization of a light beam propagating along a birefringent

single mode optical fiber can be described using several analytical and graphical methods. One

approach involves using a straightforward method of calculating how the electric field varies

as the wave propagates along the fiber. In such an approach, an understanding of how the

polarization evolves as the beam propagates is not immediately obvious from the complex slowly

varying electric field amplitude [1]. The Jones matrix formalism is another approach that has

been used to study the rotational effects of polarization in optical fibers [2]. Svirko and Zheludev

[3] used tensor analysis to obtain expressions that describe the response of a birefringent fiber

to the propagating beam. Several other authors use an alternative method of the dynamical

equation for Stokes parameters to describe the polarization changes of a wave propagating in

an optical medium [4] and [5]. The use of Stokes parameters has an advantage of providing a

rather straightforward analytical definition of different polarization states of light. Daino et al

[6] analysed the evolution of the state of polarization along a nonlinear single-mode birefringent

fiber using Stokes parameters and gave exact solutions illustrated by means of a Poincare sphere

representation.

In this work, the polarization state of a lightwave is expressed in terms of Stokes parameters.

Using the method of ordered exponential operator [7], a formal solution to the system of differ-

ential equations is obtained in terms of the Stokes-Mueller equation which has a Mueller matrix

containing the information necessary to characterize the fiber so that its effect on the state of

polarization can be deduced and the Stokes parameters of the outgoing and incident light beams

become known. The elements of the Mueller matrix for different sources of perturbations are

then obtained using the Lorentz group formalism.

2 THEORY

To analyze the polarization dynamics of a light beam propagating along a birefringent single

mode optical fiber. wre begin by deriving a system of four coupled differential equations repre-

senting the evolution of polarization along the optical fiber. We use the methods of Svirko and

Zhedulev [3] to derive the system of coupled differential equations which represent the evolution

equations for Stokes parameters for the case in which both linear birefringence and dichroism

are present in the fiber and are parallel to one another in Stokes space
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A is the isotropic loss of the fiber, 5 represents anisotropy in the fiber, and 5 relates to its

diattenuation effects. {So, S-\ ,S-2,Ss,} are the Stokes parameters and z is an axis that coincides

with the axis of the fiber along which the fields propagate. <i> is an angle between the laboratory

and natural coordinate frames of the fiber.

Solutions to the set of equations can be expressed compactly in terms of the Stokes-Mueller

matrix equation in the form

S = M - S (0) (3)

where M is the Mueller matrix of the perturbed single mode fiber. S and S (0) represent the

Stokes 4-vector notation for the input and output Stokes parameters, respectively.

After expanding in terms of the ordered exponential operators [7], the 4 x 4 Mueller matrix

M can be explicitly written for uniform birefringence and dichroism as [8]

M (A, d, /3, z) = exp (-Az) exp d - D )z+ [S3 - B \z (4)

where d = {d i ;d2,d3} is the dichroism 3-vector related to the polarization dependent loss

effects of the fiber and (3= < j3l,j32~f3^ ? is the birefringence 3-vector related to the fiber

anisotropy. We note that d = < 25" cos 26,25" sin 2<f>, 0 > and /3= < 25' cos 20, 25' sin 2^, 0 >.

A T A A A T A T A A A " !

Also, D = s Di , D2^ DH > and B = s Bi , B2? Bs f are six matrices which form an appropriate set

of Lorentz generators for dichroism and birefringence, respectively.

The Mueller approach involves the Stokes parameters collectively behaving similar to a

Lorontz 4-vector. In this case, the Mueller matrices are essentially four-dimensional Lorentz
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transformations acting on the Stokes 4-vector [9]. A Lorentz transformation is any matrix that

can be expressed as [10]

L (v, u) = cxp [(v • K) + (u • J)] (5)

where v is a real 3-vector (with cartesian components v-|, v2, v3) and u is a real 3-vector (with

cartesian components uj_, u2, u3). A transfornration for which u = 0 is a rotation matrix and a

transformation for which v = 0 is a boost matrix. The notations K and J are each shorthand for

three matrices: {Km, J m in = 1,2.3}. These matrices are called generators, and they satisfy

the following commutation relations

\yl;

3
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n=1

where £;mn is component of the three-dimensional totally antisymmetric tensor with (£123 = +!)•
A A

We note that the matries D and B in Eq.(4) are the generators of the irrepf, rj)of the

Lorentz group such that

where the irrep(^, ^) is the vector representation of the Lorentz group. It is a four-dimensional

real representation with generators
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Thus the Mueller matrix of the perturbed single mode fiber is essentially a Lorentz vector

transformation. Then, the Mueller matrix for a purely birefriiigent single mode fiber is a rotation

matrix. That is,

M f 0, 0,/?, z =
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I + e ;r B
A\" / A

- e 3 - B cof>ftz + [ e s B ] s i n ft z (9)

where p = 28 is the magnitude of j3, and

e/j = ~j = Aei + ^2e2 +
P

is a. unit vector in the direction of the total birefringence.
/ _̂  \

We now write M I 0,0, i6,z I more explicitly as
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Also, the Mueller matrix for a purely dichroic single mode fiber is the product of a scalar

exponential factor and a boost matrix. Thus,

M(A,d,0,z) =exp ( -Az )
A
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where d =26 is the magnitude of d. and
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is a unit vector in the direction of the total dichroisiii. I is the 4 x 4 identity matrix. Similarly,

Eq.(12) can be written more explicitly as

M(A,d,0,2) =
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The Mueller matrices for pure birefringence and dichroisiii are Lorentz transformations and

therefore have specific geometrical interpretations. In the next section, we discuss specific cases

of the Stokes-Mueller matrix equation for different input polarization of the propagating light

beam.



3 RESULTS

The Mueller matrix which characterizes the perturbations due to the presence of linear bire-

fringence and dichroism in the fiber can therefore be obtained and expressed as the composite

of the individual matrices due to only birfringence and only dichroism because the individual

Mueller matrices commute. In other words, the product of equations (11) and (14) yields the

Mueller matrix for the fiber. Hence, the Stokes Mueller equation can be written as

s \
S^
S2

= e
-Az

Ch —C20S11

C24>S24> (Ch —

0 \ \

V 5 3 0
(15)

where Ch = coshfiz, Sh = sinhriz, S2(j} = siii2<j6, C241 = oos 2G>, Cfj = cosffz and Sfj = sin/'iz.

The elements of the matrix in Eq.(15) can be expressed in functional forms to obtain the

output Stokes parameters for different input polarization of a light beam propagating along

a birefringent single mode fiber. Using these functional forms, graphical results showing the

variation in the output Stokes parameters for different input polarization of a beam which

propagates along a, birefringent fiber having small losses can be obtained. Figure (1) shows

the change in output Stokes parameters for right circularly polarized input light as a function

of the fiber length for a specific case in which circular birefringence and dichroism are both

assumed absent in the liber [11]. In this figure, the total intensity of the input light is seen to

be dissipated by the fiber. This is due to attenuation by the fiber. Also, the output beam is

observed to emerge elliptically polarized.
We now discuss specific cases of the Stokes-Mueller relation Eq.(lo) and analyze some of

the resulting polarization effects which emerge from different input polarization states of light
propagating along a birefringent fiber. If the fiber is assumed to have negligible loss with small
anisotropy along its length, then there is no dichroism and the linear birefringence relates to the
anisotropy. In addition, we assume that there are external perturbations due to twists along the
length of the fiber so that circular birefringence is present. Again, the corresponding Mueller
matrix can be expanded in terms of the exponential of the birefringence vector and Lorentz
generators to yield the following Stokes-Mueller relation
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where C24 = cos20, C'20 = cos29, S20 = sin26, S3 = sin/3; and Cp = cos(iz.

Using Eq.(16), numerical results for the output Stokes parameters for different cases of input

light (initially linearly polarized light, linear +45° polarized light, right circularly polarized light

or elliptically polarized light) as a function of fiber length can be obtained. Figure (2) illustrates
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the variation in the output Stokes parameters as a function of hber length for elliptically polarized

(45° azimuth and 22.5° ellipticity) input light [11]. It is observed that for this input polarization

and with circular birefringence present, the Stokes parameters vary sinusoidally with length.

However, it is further observed that when loss effects are neglected and circular birefringence is

assumed absent, the Stokes parameters remain constant for any input polarization. Thus, the

presence of circular birefringence induces a variation in the polarization state of the propagating

light in a lossless fiber. It is also observed that the beam emerging from the fiber has the same

form as the input polarization for all cases of input polarization regardless of the presence or

absence of circular birefringence. That is, for linearly horizontally polarized input light, the

output light is observed to be linearly polarized on-axis and similarly for off-axis, circular and

elliptical input polarizations.

4 CONCLUSIONS

In this paper, we have used the Lorentz group formalism to obtain analytical solutions to the

evolution equations for the Stokes parameters. These solutions can be used to numerically obtain

the polarization dynamies of a light beam along a birefringent single mode optical fiber subjected

to a bend or twist. To test the validity of the solutions, we applied them to the test case of a

straight fiber. The basic polarization effects of linear and circular birefringence and dichroism

have been observed and presented. We have noted that when loss effects in a birefringent single

mode optical fiber are neglected and circular birefringence is further assumed absent, the Stokes

parameters remain constant for any input polarization. In addition, the presence of circular

birefringence induces a variation in the polarization state of the propagating light in a lossless

hber. As expected, when losses are considered, the total intensity of the input light decays

exponentially. The total intensity is dissipated due to attenuation by the fiber.
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Figure 1: \&riation in output Stokes parameters for right circularly polarized input light as
a function of fiber length. Circular birefringence and dichroism are assumed absent.
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Figure 2: "Variation in output Stokes parameters as a function of fiber length for elliptically
polarized (45° azimuth and 22.5° ellipticity) input light. Circular birefringence assumed
present and linear birefringence off-axis allowed.


