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ABSTRACT

In this thesis, a deterministic mathematical model for the transmission and con-

trol of malaria, incorporating prevention and treatment as control parameters

has being developed. A novel addition in our model is that, a proportion cα,(0≤

c ≤ 1), of the prevention effort (α), reduces the vector population. The model

has two unique equilibrium points namely, a disease-free equilibrium point,

which is locally and globally asymptotically stable when R0 < 1; and an en-

demic equilibrium point which is locally and globally asymptotically stable

when R0 > 1. The parameters of the model were estimated using yearly malaria

transmission data for Ghana, (from 2004 to 2017), obtained from the World

Health Organization. Simulations of our model using various combinations of

treatment and prevention, with increasing values of the constant c, show that, in-

fected vector and human populations can be drastically reduced, thus effectively

controlling the transmission of Malaria. To determine an optimal combination

of prevention and treatment, we formulated an optimal control problem, with

an appropriate cost functional, using 0 ≤ u1 ≤ 1 (prevention), and 0 ≤ u2 ≤ 1

(treatment) as controls. Pontryagin’s Maximum Principle was used to determine

the optimality system. Solutions of the optimality system, with u1max = 0.5, and

u2max = 0.2, (representing maximum prevention effort and treatment rate re-

spectively), show a dramatic reduction in both infected human and vector popu-

lations. Further simulations show that, malaria can be eradicated by increasing

prevention efforts (u1max > 0.5), combined with treatment made accessible to

everyone diagnosed with malaria.
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CHAPTER ONE

INTRODUCTION

The application of epidemic models to investigate the spread of an infec-

tious disease is widely used by mathematical biologist and epidemiologist. In

addition, the application of optimal control methods in mathematical epidemi-

ology has become an important area of research in applied mathematics. In this

study, we will investigate various strategies for effectively containing the spread

of, and possibly eradicating, malaria in Ghana. Several works in the literature

have been used by researchers to understand the transmission characteristics of

malaria, and this has lead to some improvements in controlling disease. In this

study, we will use optimal control methods applied to an epidemic model, which

incorporates vector reduction through prevention efforts. This chapter discusses

background to the study, transmission process, treatment process, motivation,

objectives and definition of terms.

Background to the Study

Malaria is a leading cause of mortality and morbidity in tropical and sub-

tropical regions around globe, where an estimated two hundred million people

are at constant risk of infection, with Africa being the most impacted. The World

Health Organization reports that in Sub-Saharan Africa, malaria kills at least one

million people annually and it has the potential to increase significantly due to

continuous climate change. Thus, the role of rainfall and temperature in popula-

tion dynamics and its mosquito vector. In underdeveloped countries, the disease

persists and has become a severe public health and socio-economic challenge.

Plasmodium genus with four different species causes human malaria and

transmitted via the bite from infected female anopheles mosquito. The following

1
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species are the causative agents for malaria in humans:

1. P.falciparum, the much more deadly human parasites and most prevalent

in tropics.

2. P.vivax is the common cause for clinical malaria, yet its rarely fatal.

3. P.malariae, particularly in Africa, a rare cause of clinical malaria. It can

last for decades as low-grade parasitaemia.

4. P.ovale causes clinically relevant but not severe disease, however it can be

discovered in infections with some other species.

Malaria transmission

Transmission of the parasite occurs when an infected adult female anophe-

les mosquito bites an individual (Putri & Jaharuddin, 2014). The bites usually

occur between dusk and dawn, and its intensity depends on factors related to

the vector, the human, the environment and whether it chooses to bite humans

or animals (World Health Organization, 2019a). The vector becomes infected

when it bites an infected human or animal. They never recover from infection;

moreover, the infection is not harmful to them. Adult female mosquitoes have

a life span of approximately 4-6 weeks; Female Anopheles mosquitoes cannot

live without a human host since they depend on blood of human to develop their

eggs (Tumwiine, Luboobi, & Mugisha, 2006). Infection of malaria to humans

takes place when mosquitoes inject their saliva containing sporozoites into hu-

mans and they are carried to the liver within 30-60 minutes (Scientific American,

2019). They then penetrate the liver hepatocytes and undergo a phase of asexual

multiplication that results in the production of approximately 8− 6 merozoites

and these merozoites penetrates the red blood cells. This continuous activity

is responsible for the cause of infection of the disease (Hempelmann & Krafts,

2013). Chills, fever, headache, diarrhoea, anaemia, liver and neurological dam-

2
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age are the symptoms of malaria (Adamu, Ochigbo, Williams, & Okorie, 2017).

Malaria prevention

The primary line of defense against mosquito-borne disease is personal

protection. The use of mosquito repellent is one technique pf personal protec-

tion. These are chemicals that are applied to exposed skin or clothing to keep

mosquitoes away from humans. These deter mosquitoes but do not harm them.

The use of an Insecticide-Treated bed Nets to protect individuals against malaria

has been found to lessen childhood (below five years of age) morbidity by 50%

and global child mortality by 20-30%. When used in big quantities, ITNs are

considered to be efficient instrument for controlling malaria vectors. However,

resistance to the insecticides used in impregnated nets is a limiting problem. Re-

sistance of the most important African malaria vector Anopheles gambiae s.l. to

pyrethroid is already widespread in several West African countries and most es-

pecially Ghana. Government intervention comes in many forms, some of which

have already been mentioned. Other attempt on the governmental level includes

mass spraying of endemic areas to reduce the biting rate of mosquitoes.

Malaria treatment

There have been several attempts against the transmission of malaria in-

cluding residual spraying indoor, the usage of insecticide treated bed-nets, rapid

diagnosis and appropriate treatment (World Health Organization, 2019b). Insec-

ticide treated net provides a physical barrier that restrict face to face interactions

between mosquitoes and humans. In 2018 malaria report, about half of the hu-

man population of the endemic African countries were protected by insecticide

treated net (World Health Organization, 2018).

Moreover, Ghana initiated the process of using Artemisinin-based combi-

nation therapies following recommendations given by WHO for all countries ex-

3
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periencing resistance to mono-therapies in the treatment of falciparum malaria

in 2002 (Azu-Tungmah, 2012).

Statement of the Problem

According to the World Malaria Report (2018), Ghana is considered to be

one of the malaria-endemic countries. It is also one of the eleven countries that

accounts for 70% highly cases and deaths of malaria globally (World Health

Organization, 2019a). It also recorded 219 million malaria cases and 435000

malaria related death (World Health Organization, 2019b). Children under 5

years accounted for 61% malaria related death worldwide in 2017 (World Health

Organization, 2019b).

Therefore, it is imperative that more research be carried out in order to

effectively control malaria transmission.

Purpose of the Study

The purpose of the study is to develop a deterministic epidemic model,

with prevention and treatment as contols. Then, use the model to determine an

optimal combination of these two controls that will effectively contain, possibly

eradicate malaria transmission.

Research Objectives

The study’s major goal is to use mathematical methods to analyze the dy-

namics of malaria transmission and the minimum cost for effective eradication

of malaria. The objectives of the research are:

1. To develop a deterministic vector-host epidemic model that incorporates

prevention and treatment strategies for malaria transmission. In particu-

4
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lar, we assume that a proportion of the prevention effort can be directed

towards reducing the vector population.

2. To obtain the equilibrium points of the model that incorporates treatment

and prevention strategies for malaria transmission.

3. To find the basic reproduction number R0, of the vector host epidemic

model.

4. To determine the conditions for local and global stability of that model.

5. To validate the model from data, using the least-squares method.

6. To perform simulations of the model using various combinations of treat-

ment and prevention to determine which combination that reduces the

infectious population fastest.

7. To suggest an optimal combination of treatment and prevention for pos-

sible eradication of the disease at a certain proportion of preventive mea-

sures that reduce mosquitoes (c), where c is proportion of the preventive

measures that reduces mosquitoes population.

Significance of the Study

The studies would be feasible in various approach. Thus, it would aid in

eradicating malaria by :

1. Reducing the number of infected human and vector populations.

2. Suggesting an optimal combination of treatment and prevention for pos-

sible eradication of malaria.

5
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Delimitation

This study is focused on a five state epidemic model. The dataset used

for this study was focused on the number of infected cases of malaria in Ghana

and it was obtained from World Health Organization. This would help to obtain

effective strategy for prevention and treatment of malaria.

Limitations

The availability of data for mosquito population in Ghana was a major

limitation for this study. Also, there was no daily data on malaria for infected

human population from the World Health Organization.

Definition of Terms

This section reviews some basic definitions needed to understand the model.

Definition 1

A differential equation of the type

dy
dt

= f (y), (1.1)

in which f does not depend explicitly on the independent variable (t, in this

case) is called an autonomous differential equation.

Definition 2

A system of first-order ordinary differential equations of the form

dx
dt

= f (x), x ∈ Rn, f ∈ Rn, t ∈ R, (1.2)

where x=(x1, ...,xn)
T , f (x)= f1(x1, ...,xn)

T , f2(x1, ...,xn)
T , · · · , fn(x1, ...,xn)

T ,

in which the independent variable does not appear explicitly is called an au-

tonomous system

6
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Definition 3

An equilibrium point ( fixed-point,steady-state solution, critical point) of

the differential equation (1.2) is a constant solution x∗ ∈ Rn, satisfying

f (x∗) = 0. (1.3)

Definition 4

An equilibrium point x∗ is said to be locally stable provided that, for each

ε > 0, there is δ > 0 such that

‖x0− x∗‖ < δ⇒‖x(t)− x∗‖ < ε for all t > 0. (1.4)

Intuitively, an equilibrium point x∗ = (x∗1,x
∗
2, · · · ,x∗n) ∈ Rn, of the autonomous

system (1.2) is called stable provided that if the initial point x0 =(x0
1,x

0
2, · · · ,x0

n)∈

Rn is sufficiently close to x∗, then the trajectory

x(t) = (x1(t),x2(t), · · · ,xn(t)) remains close to x∗ for all t ≥ 0.

Definition 5

An equilibrium point x∗ is locally asymptotically stable if the point x∗ is

locally stable, and all the solutions that starts near x0, approaches x∗ as t→ ∞ .

Mathematically, ∃ δ > 0 such that

‖x0− x∗‖< δ⇒ lim
t→∞

x(t) = x∗

Organization of the Study

This thesis is divided into five main chapters. Chapter One describes back-

ground of the study, transmission and treatment of malaria.

Chapter Two reviews researches that have been done in the dynamics of

a malaria epidemic. This chapter constructs strategies and results used to eradi-
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cate malaria. It also gives an overview of initiatives that have been done locally

and globally.

Chapter Three discusses the methods used to perform analytic compu-

tation of the system. This chapter also presents the results of the analytic and

numerical computations of the system. The analysis includes computation of the

equilibrium points, basic reproduction number and performing local and global

stability of the equilibrium points. This involves the use of data on the number

of infectives, using the data to determine some parameters of the model. Also,

analysis of the model using different combinations for prevention and treatment

strategies are investigated in this chapter. The chapter also gives a presentation

on how an optimal control problem is formulated. First, an objective functional

is defined, and necessarily conditions for optimality is established using Pon-

tryagin’s Maximum Principle.

Chapter Four investigate numerically the solutions of the optimality sys-

tem, using the forward-backward sweep method, based on the Runge-Kutta

method approach.

Chapter Five presents the summary, conclusions and recommendations.

Chapter Summary

In this chapter, a brief introduction to the problem of study is presented.

Then, background to the study, transmission and treatment of malaria is ex-

plored. The purpose of study, the main objectives of the research, terms defini-

tion and the organization of the research are stated.

8
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This section re-examines related research on mathematical model of malaria

and the application of optimal control approach is presented. Mathematical

models enable us to understand the dynamics of an epidemic, predict transmis-

sion rates, evaluate and compare control and prevention strategies. In addition,

Hocking (1991) examined the effect of an epidemic on social, economical, bio-

logical and environmental activities.

Use of Mathematical Models in Controlling Epidemics

This application of mathematical models to understand the dynamics, pre-

vention and eradication of malaria has been investigated by several researchers.

One of the first researcher to publish a series of papers on malaria using mathe-

matical model to study transmission process was Ross (1911). His research was

on the formulation of a differential equation model using standard incidence and

some biological factors such as the biting frequency of the mosquitoes. Anal-

ysis from Ross (1911) shows that malaria can only persist if the number of

mosquitoes is above a certain threshold. Therefore, it is not necessarily to kill

all mosquitoes in order to eradicate malaria. Several research on malaria was

explored and examined after Ross (1911). For example, there was a review by

Aron and May (1982) on dynamics of malaria population. In their study, the

added some features like incubation period in the mosquitoes model.

Also, Anderson, Anderson, and May (1992) reviewed research by Aron

and May (1982) by adding new characteristics such as the latent period, recovery

9
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rate for humans, life expectancy of the mosquitoes Bacaër (2011).

Several models on malaria was developed after that. For instance, N. R. Chit-

nis (2005) developed and examined a mathematical model of malaria to under-

stand its transmission process. They used their model to measure intervention

strategies to control malaria for areas with low and high transmission rates. Af-

ter computing the sensitivity indices to obtain baseline values for the endemic

equilibrium and the R0, they observed that an effective control of malaria re-

quires the usage of an insecticide treated nets and early diagnosis with treatment

of an infected individual.

Also, Tumwiine et al. (2006) considered a vector-host mathematical model

for the spread of malaria that incorporates recruitment of the human population

through continuous immigration and a portion of infective immigrants. In their

model analysis, they found out that there is no DFE point in the presence of

infective immigrant people. However, it exhibits a unique endemic equilibrium

state if the fraction of the infective immigrant is positive. Therefore, the role of

human migration and travel must be recognized in the spread and transmission

of malaria and should receive equal attention as given to malaria and its parasite.

Recently, a paper by Mojeeb, Adu, and Yang (2017) on the dynamics of

a four dimensional, SEIR followed by seven dimensional SEIR− SEI malaria

transmission model between human and mosquitoes. Their model investigated

and varied parameters for the endemic and disease free equilibrium points. Re-

sults from the sensitivity analysis depicts that the infection rates for humans and

mosquitoes are the most effective parameters for the models. In addition, re-

sults obtained from the simulations shows that reducing contact and infection

between human and mosquito can help to reduce malaria transmission.

Another researcher, Adamu et al. (2017) proposed a topic on ”Local Sta-

bility Analysis of Host-Vector Malaria Disease Model.” This study was modifi-

10
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cation of the work of Fekaduet Kobe and Koya (2015). The model by Adamu et

al. (2017) incorporated a vector reduction parameter and vaccination as a new

control strategy. A lot of study for infectious disease incorporate treatment to

reduce infected population and vaccination or sensitization for the reduction of

susceptible populations but in their model they included a vector reduction pa-

rameter as an additional control feature. Thus, they proposed that susceptible

as well as infected mosquitoes are reduced at the same rates and the vaccina-

tion parameters are included. They found out that treatment and vaccination as

a way of protecting the menace of the infection in the human population was

quite insufficient. Also combining the effect of treatment, vaccination and vec-

tor population reduction as an additional strategy, malaria may be eradicated as

soon as possible.

Moreover, Wedajo, Bole, and Koya (2018) presented a paper that anal-

ysed the SIR model of malaria with the inclusion of infected immigrants. In

their model, they considered SIR compartment for human population and SI

compartment for mosquito population. Also, individuals who recovers in the

human population develops permanent immunity. This means recovered indi-

viduals cannot be infected again. Numerical analysis from the model of Wedajo

et al. (2018) reveals that the reproductive number will reduce to one if a focus

is given to infected human immigrant. Therefore, they recommends that pre-

vention of infected human immigrant have a strong influence of bringing the

disease under control.

In a model by Bala and Gimba (2019), they investigated the effects of

bed-nets, drug treatment, and their efficiency on two strains of malaria model

where global uncertainty and analysis was also conducted. They found out that

if 95% of malaria-related occurrences can be treated with 95% ITN usage and

5% failing of treatment in population, then malaria can be controlled. Similarly

11
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Putri and Jaharuddin (2014) investigated on SIRS−SI model of malaria disease

with the implementation of anti-malaria drugs,vaccines and spraying. They dis-

cussed the frame work for transmission of malaria with treatments given to hu-

mans and mosquitoes. From their results, they proposed the Homotopy Analysis

Method (HAM) to construct an approximate solution since from their model it

was shows that treatments affect the dynamics of human and mosquito popula-

tion.

For instance, a paper by Blayneh, Cao, and Kwon (2009) emphasized on

the application of an optimal control on vector borne disease with prevention

and treatment effort as their two main controls using two deterministic model.

In the first case, they formulated a vector borne disease model with prevention

and treatment as it controls at a reduced cost. A term which looks into the fitness

of treated and susceptible host was added. In the second case, the application of

their model is applied to malaria disease where the effect of treatment and pre-

vention strategies is investigated at a minimum cost. Numerical results obtained

depicts that preventive practices are very efficient in reducing the incidence of

infectious hosts and vectors.

Again, Yusuf and Benyah (2012) investigated the vaccine and treatment

control for an SIR epidemiologic model with a bilinear incidence. They consid-

ered recovered individual with a permanent immunity. They used vaccination

and treatment as their control strategies in their formulation. Their main objec-

tive was to examine the best combination of vaccination and treatment strategies

that would reduce the cost of implementing the control, as well as infected in-

dividuals. Numerical results from the model of the optimal system depicts that,

whenever vaccination is more costly treatment, then resources ought to be chan-

nel to treating the disease till the prevalence of the disease falls. On the other

hand, if treatment is more expensive than to vaccinate, then resources should be

12
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invested in vaccination. In the case where the two controls are expensive, then

it is better to use more of the vaccination and less of the treatment as control

since there is a considerable decrease in the number of infectives. Therefore,

results shows that achieving relative cost for each of the control mechanism will

determine their goal.

Also, a paper by Nana-Kyere et al. (2017) proposed a research on the con-

trol of malaria transmission model with standard incidence rate. Their model

assumed that individuals who recover from malaria develops a temporal immu-

nity. This means they are susceptible again and are likely to be re-infected.

Also, they assumed that susceptible mosquitoes can be infected when they bite

infectious or recovered human. Their model elaborated on some of the control

strategies such as prevention, treatment and application of insecticide spray on

the vector. These was to evaluate the effectiveness of usage on sleeping under

insecticide treated mosquito net in order to avoid bites and direct interactions

with mosquitoes, the utilization of insecticides spray on bleeding grounds of

mosquito and the rate at which infected individual are treated after being infec-

tion. Numerical results obtained from their plots shows that the proposed control

strategies are effective and efficient in the decrease of number of exposed and

infected human and mosquito as well.

According to Bakare and Abolarin (2018), rainfall and other environmen-

tal can either be an efficient hindrance or promote a vector borne disease. So

they presented a paper that included the effect of seasonality of rainfall and four

timely dependent measures of control, namely, usage of treated bed-nets, educa-

tional campaign, insecticides spray and treatment of human. They realized that

epidemiological modeling focuses mainly on recognizing mechanisms that are

responsible for the outbreak of epidemics but takes small account on economic

constraints in examining control strategies. Also, for economic models they
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give intuition on optimal control approach subject to constraints under limited

control strategies. Therefore, their results indicates that combining economic

and epidemiological factors is important.

Chapter Summary

In this chapter, we have presented a review of related research on mathe-

matical epidemic models incorporating control strategies. Many of the reviews

on mathematical models of malaria include intervention strategies such as pre-

vention, treatment, using treated insecticide nets and insecticides spray. From an

optimal control perspective, these strategies serves as controls. However, in all

the reviews stated above, the models do not include the effects of prevention on

the reduction of vector populations, an essential factor in containing the spread

of the disease. Again, all the papers in the reviews assumed that treatment is

readily available to every infected individual. This is far from the truth. In fact,

there are many communities which do not have ready access to treatment; and

there are individuals who simply cannot afford the cost.
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CHAPTER THREE

RESEARCH METHODS

Introduction

This chapter develops mathematically, a deterministic model for the trans-

mission and controlling of malaria, using a saturation incidence. A special fea-

ture of our model is that a proportion cα,(0 ≤ c ≤ 1) of the prevention effort

α, contributes to a reduction of the vector population; for effectively control-

ling the spread of malaria. A mathematical analysis including the computation

of an equilibrium points, and the basic reproduction number R0, will be per-

formed. We will also perform global and local stability analysis of the equilib-

rium points. We will use the method of least-squares, implemented in Python,

to optimize the parameters for our model, using data on confirmed cases of

malaria infection, obtained from WHO, from the year 2004 to the year 2017.

Simulation of the model, using various combination of the controls α and γ

will be performed, to determine their effect on the incidence and prevalence of

malaria in Ghana. In order to determine the best treatment (γ) and prevention

(α) technique for the control of spread of malaria, We will formulate an Optimal

Control problem. Pontryagin’s Maximum Principle will be utilized to obtain the

optimality system. The resulting two-point boundary-value problem would be

solved to determine the best strategy of preventive and treatment for effectively

controlling the disease.

Mathematical Background

This section reviews some basic definitions and theorems needed to un-

derstand the model.
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Definition 6

An equilibrium point (fixed-point or critical point ) of a differential equa-

tion (1.2) , is a constant solution x∗ = (x∗1,x
∗
2, · · · ,x∗n) ∈ Rn, satisfying

f (x∗) = 0. (3.1)

Example 1

For n = 1, the 1-dimensional differential equation

dx
dt

= kx(1− x
M
), k > 0, M > 0 (3.2)

has two points of equilibrium: x∗1 = 0, and x∗2 = M.

Example 2

For n = 2, the 2-dimensional SIS epidemic model

dS
dt

= µ−βSI + γI−µS,
dI
dt

= βSI− γI−µI,
(3.3)

has two equilibrium points:

1. disease-free equilibrium point: (S0, I0) = (1, 0);

2. endemic equilibrium point: (S∗, I∗) =
(

γ+µ
β

,
[β− (γ+µ)]

β

)
.

Local stability of an equilibrium point

Intuitively, an equilibrium point x∗=(x∗1,x
∗
2, · · · ,x∗n)∈Rn, of the autonomous

system (1.2) is said to be stable provided that if the initial point x0 =(x0
1,x

0
2, · · · ,x0

n)∈

Rn is sufficiently close to x∗, then the trajectory x(t) = (x1(t),x2(t), · · · ,xn(t))

remains close to x∗ for all t ≥ 0.
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Lyapunov’s indirect method for local stability

Lyapunov’s indirect method enables us to determine the local stability

of an equilibrium point through the linearization of a nonlinear system. This

method is usually referred to as the Lyapunov’s first method. Lyapunov’s indi-

rect method uses a linearization of a nonlinear system. Then, the eigenvalues of

the Jacobian matrix would be used to determine the local stability at the equi-

librium point x∗. This section investigates properties that makes an equilibrium

state stable for a non linear linearized system.

Theorem 1

Let x∗ be an equilibrium point for the nonlinear system

ẋ = f (x), x(0) = x0,

where f : D→ Rn is continuously differentiable and D is a neighbourhood of

x∗. The Jacobian matrix J, evaluated at x∗ is given by

J =
∂ f
∂x

∣∣∣
x=x∗

.

Then, the linearized system is

u̇ = Ju, u = x− x∗. (3.4)

The stability of the equilibrium point x∗ can then be determined as follows:

1. An equilibrium point (x∗) is stable asymptotically if the eigenvalues ob-

tained from J satisfy Re(λi(J))< 0, for i = 1, ...,n.

2. If the Re(λi(J)) > 0, for at least one i then equilibrium point (x∗) is un-

stable.

CASE 1: The equilibrium point is asymptotically stable if all the eigen-

values of J are negative or have negative real component.

CASE 2: If at least, one of the eigenvalues is equal to or greater than zero,

then the equilibrium point is unstable.
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The Routh-Hurwitz conditions for 2-dimensional nonlinear systems

The Routh-Hurwitz criteria give the necessary and sufficient conditions

both roots of the characteristic polynomial to have negative parts, signifying

local asymptotic stability. Let the equilibrium point, (x∗, y∗) be obtained from

the nonlinear system
dx
dt

= u(x, y)
dy
dt

= v(x, y).
(3.5)

Local stability of (x∗, y∗) can be determined from the following Theorem.

Theorem 2

Let

J =

ux(x∗,y∗) uy(x∗,y∗)

vx(x∗,y∗) vy(x∗,y∗)


be the Jacobian matrix of the linearized system given in (3.5) evaluated at the

critical point (x∗, y∗). Then the equilibrium point (x∗, y∗) is asymptotically sta-

ble iff

trace(J) < 0 and det(J) > 0

Otherwise, it is unstable.

Proof. Let a1 = ux(x∗,y∗),a2 = uy(x∗,y∗),a3 = vx(x∗,y∗),a4 = vy(x∗,y∗).

J =

 a1 a2

a3 a4

 (3.6)

The roots of the characteristics polynomial are eigenvalues of J

λ
2− (a1 +a4)λ− (a2a3−a1a4) = 0 (3.7)

The expression for the roots are

λ1,2 =
(a1 +a4)

2
±
√(a1 +a4

2

)2
− (a1a4−a2a3).
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So

λ1 =
(a1 +a4)

2
−
√(a1 +a4

2

)2
− (a1a4−a2a3)

and

λ2 =
(a1 +a4)

2
+

√(a1 +a4

2

)2
− (a1a4−a2a3)

Suppose (a1 + a4) < 0 and (a1a4− a2a3) > 0 then, λ1, λ2 are real when both

are negative, or complex when they have negative real component.

The trace of A is (a1 +a4) and the determinant is (a1a4−a2a3).

For instance, the SIS epidemic model in Equation (3.3) has a disease-free equi-

librium point at E0 = (S0, I0) = (1, 0). and a Jacobian matrix as

J =

 βI−µ −βS+ γ

βI βS−µ− γ

 (3.8)

Evaluating the Jacobian matrix at the equilibrium point E0 = (S0, I0) =

(1, 0), gives

J0 =

 −µ −β+ γ

0 β−µ− γ

 (3.9)

The eigenvalues of J0 are λ1 = −µ, λ2 = β− µ− γ. Since λ1 < 0, the

remaining condition for asymptotic stability is that λ2 = β−(µ+γ)< 0. That is,

β/(µ+γ)< 1. In other words, the condition for the equilibrium point E0
1 =(1, 0)

to be asymptotically stable is that β/(µ+ γ)< 1.

The next generation matrix and the basic reproduction number

Mathematical epidemiology uses next-generation matrix procedure to ob-

tain R0 with the aid of a compartmental model of an infectious class of a dy-

namical system. This approach was derived by (Diekmann, Heesterbeek, &

Metz, 1990) and (Van den Driessche & Watmough, 2002). Many of today’s
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most important emerging infectious diseases are multi-host infections by their

very nature. As a result, they require a slightly more complex formalism for

investigating epidemic thresholds, etc. The basic tool for examining epidemic

thresholds in complex, structured models is the so-called next generation matrix.

Consider a population of individuals (or species) subdivided into n com-

partments, of which m are infected. Let xi represent the proportion of the pop-

ulation in the ith compartment and let the vector of the proportions in all the

compartments be x.

Distinguishing new infections from the all other changes in a population

is an important feature that helps to compute R0. So we let

• Fi(x) represent the rate at which new infections appears in compartment

i,

• V+
i (x) represent the rate at which individuals are transferred into com-

partment i, and

• V−i (x) represent the rate at which individuals transferred out of compart-

ment i.

Note that transmission model for a disease consists of nonnegative initial

conditions together with the following system of equations:

ẋi = fi(x) = Fi(x)−Vi(x), i = 1, . . . ,n, (3.10)

where Vi = V −i −V +
i . We define the matrices,

F =

[
∂Fi

∂x j
(E0)

]
, V =

[
∂Vi

∂x j
(E0)

]
,

where E0 denotes the DFE with indices i, j = 1, · · · ,m. The matrix G, given by

G = FV−1
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is called the next generation matrix (Diekmann et al., 1990). The entries of

the matrix give the rate at which infected individuals of state j generate new

infections of type i.

The dominant eigenvalue of G is the basic reproduction number R0. That

is

R0 = ρ(G) = ρ
(
FV−1) . (3.11)

For instance, the following SEIS epidemic model

S′ = µ− cSI−µS+δI

E ′ = cSI− (µ+κ)E

I′ = κE− (µ+δ)I

(3.12)

has E0 = (1, 0,0) .

To compute R0 for the model, we note the two disease states of the model

namely, E and I. The vectors Vi and Fi are defined respectively as

F =

cSI

0

 , V −i −V +
i = V =

 (µ+κ)E

(µ+δ)I−κE

 .
The matrices F and V are given respectively as

F =

0 cS

0 0

 , V =

µ+κ 0

−κ µ+δ

 .
Now,

V−1 =


1

µ+κ
0

κ

(µ+κ)(µ+δ)

1
µ+δ

 .
The matrix G is now given by

G = FV−1 =

 cκ

(µ+κ)(µ+δ)

c
µ+δ

0 0

 .
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The basic reproduction number is given by the spectral radius of G, denoted by

ρ(G). That is,

R0 = ρ(G) =
cκ

(µ+κ)(µ+δ)
.

Global stability analysis

Generally, Lyapunov direct method is used to establish properties of an

equilibrium point of a non-linear system globally. This is when scalar functions

are selected carefully and studied how the system state evolves.

Theorem 3

Consider the system ẋ = g(x), x∗ = 0 where g : D→ Rn is locally Lips-

chitz and D ⊂ Rn a domain of origin. Let V : D→ R be a continuous differen-

tiable positive definite function in D .

1. If V̇ (x) =
∂V
∂x
·g 6 0, then x∗ = 0 is globally stable

2. If V̇ (x) =
∂V
∂x
·g < 0, then x∗ = 0 is globally asymptotically stable .

In both cases above, V is called a Lyapunov function. Moreover, if the

conditions hold for all x ∈ Rn and ‖x‖→ ∞ implies that V (x)→ ∞, then x∗ = 0

is globally stable in (1), and globally asymptotically stable in (2).

We present the common Lyapunov candidate functions.

1. Logarithmic Lyapunov Function:

V (x1,x2, ...,xn) = ∑
n
i=1 ci(xi− x∗i − x∗i ln xi

x∗i
),

2. Common Quadratic Lyapunov Function:

V (x1,x2, ...,xn) = ∑
i=1
n

ci
2 (xi− x∗)2,

3. Composite Quadratic Lyapunov Function:

V (x1,x2, ...,xn) =
c
2

[
∑

i=1
n (xi− x∗)

]2
,
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Parameter Estimation

This section presents the method used for estimating parameters. In math-

ematical modelling of epidemics, one of the relevant techniques is to relate the

model output with observed data.

Definition 7

Curve-fitting also known as Curve Calibration is the process of determin-

ing the models parameters so that the solution best matches the data.

In order to calibrate a mathematical model, we require time series data

that describe the temporal changes in one or more states of the system. The data

sets available might be a daily, weekly, monthly or yearly data sets. Simulations

of the models using different combinations of prevention and treatment will

be performed to determine their effects on the incidence and prevalence of the

disease. In addition, the simulations will help us to know the effects of the

parameter c on the infected vector and human populations.

Least squares method

The least-squares approach fits the solution curve through the data points

so that the sum of squares error SSE, of the vertical distances from the data

points to the point on the curve is as small as possible.

Consider an epidemic model described by the initial value problem of a

system of differential equations:

y(t)
dt

= f (t,y; p), y(0) = y0, (3.13)

where y ∈ Rn, f ∈ Rn, and p ∈ Rm, is some vector of parameters.

Suppose we have a collection of observed values of the prevalence I(t), of

the disease at k data points: (t1,Y1),(t2,Y2), · · ·(tk,Yk). The least squares method
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determines the optimal parameters, p, by minimizing the Sum of Squares Error

SSE(p) =
k

∑
i=1
‖I(ti)−Yi‖2

2, (3.14)

where I(t) = y j(t; p), is the jth component of the solution of the system in Equa-

tion (3.13), representing the infected population; and Yi are the actual observed

values of I(t) at the points ti.

Differential equations of epidemic models are often nonlinear and there-

fore, cannot be expressed explicitly. Also, the sum-of-squares error SSE, is

a function of the parameters of the model. Hence, the minimization problem

given in Equation (3.14) is also highly nonlinear. In general case, this problem

is solved numerically using Computer Packages such as Mathematica, Maple,

Matlab/Octave, Python or R.

The code requires two basic components: a differential equation solver

and a minimization routine. Both routines are available in Python.

Optimal Control Formulation Methods

This section describes the general formulation of optimal control. These

includes the the description of the state and costate equation and a general

overview of the optimal formulations with definition of some basic terms. The

state equation is as fellow:

Ẋ = g(x,u, t), x(t0) = x0, 0≤ t ≤ t f , (3.15)

where

x(t) = x1(t),x2(t), . . . ,xn(t) (3.16)

are the state variables and

u(t) = u1(t),u2(t), . . . ,un(t) (3.17)
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are the control variables. The initial time t0 is mostly given whiles the T is the

terminal time and may be free or fixed.

Definition 8

The cost functional is denoted by

J(u) = Φ(x(t f ))+
∫ t f

0
f (x(t),u(t), t)dt, (3.18)

with Φ(x(T )) as the terminal cost and the integrand depends the state of the

system along the trajectory of the solution. The general form of optimal control

problem can be defined as fellow

min
{

J(u) = Φ(x(t f ))+
∫ T

0
f (x(t),u(t), t)dt} (3.19)

subject to dynamics of

ẋ = g(x(t),u(t), t), x0 = x(t0), (3.20)

where x0 and t0 are given. The domain of the controls is given as

U = {u|u : [t0,T ]} ∀ t ∈ [t0, t f ]. (3.21)

Pontryagin’s Maximum Principle

The Pontryagin’s Maximum Principles uses necessarily conditions to ob-

tain the optimality system (Panetta & Fister, 2000).

First Order Necessary Conditions

The first order necessary condition is obtained by adjoining the constraint

to the objective function using the Lagrangian multiplier vector and is given as{
J(u) = Φ(x(t f ))+

∫ t f

0
f (x(t),u(t), t)+λ

T [ f (x(t),u(t), t)− ẋ]dt} (3.22)

The Hamiltonian function is given as

H = f (x(t),u(t), t)+λ
T g(x(t),u(t), t). (3.23)

The numerical approach for obtaining optimality system is as follows:
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1. solving the state equation forward in time using[
∂H
∂x

]T

= 0, x(t0) = x0 (3.24)

2. solving the costate equation backward in time using[
∂H
∂λ

]T

= 0, [λt f ]
T =

∂φ(x(t f ))

∂x
(3.25)

3. solving the optimal condition using[
∂H
∂u

]T

= 0 (3.26)

4. using the solutions u∗ and x∗ to evaluate the objective function numeri-

cally to obtain convergence.

A Mathematical Model for Malaria Transmission

Here, a vector-host epidemic model for malaria transmission would be

formulated. We assume that movement from the susceptible classes to the in-

fectious classes in both the host and the vector is dependent on the mosquitoes

biting rate and their transmission probabilities. The biting rate b, is defined

as the average number of bites per mosquitoes per day; while the transmission

probabilities βh,βv, is the probability that an infectious bite will result in a new

case in a susceptible population only. We also assume that the mosquitoes do

not only feed on a human host, but have m alternative hosts available as blood

sources.

Model Formulation

The total population sizes for the vector and host at a given time t is de-

noted as Nv(t) and Nh(t) respectively. The population for the host uses the SIRS

epidemic model with three compartments, namely, the Susceptible Sh, Infected
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Ih and Removed Rh with partial immunity at a given time. The total population

for human is expressed as

Nh(t) = Sh(t)+ Ih(t)+Rh(t).

At the susceptible stage, individuals are recruited at a rate Λh. This in-

cludes natural birth rate and migration. Individuals in this class move to the in-

fectious class at a biting rate b and transmission rate βh. The probability that an

individual receive a bite from a mosquito per unit time is given as
(

bNv
Nh

)(
Nh

Nh+m

)
and the rate at which susceptible human is being infected is given as

(
βhbIv
Nh+m

)
. In

addition, individuals in the susceptible class can be given preventive measures

and they move to the removed class. Also, at the infection stage, an individual

can die or receive treatment and recover with partial immunity. In addition, the

recovered individual in the removed class returns back to the susceptible class

with a higher chance of being infected again after loss immunity.

Similarly, for the vector population Nv(t), it uses the SI epidemic model

with two classes Sv, Iv representing the susceptible and infected class of the

vector respectively. Thus, we have

Nv(t) = Sv(t)+ Iv(t).

The susceptible population includes migration and natural birth. Mosquitoes

become infected when they bite an infected human host at a biting rate b and

transmission rate βv. The probability that mosquitoes takes human blood meals

per unit time is given as
(

bNh
Nh+m

)
and the rate at which susceptible vector is being

infected is given as
(

βvbIh
Nh+m

)
. Susceptible mosquitoes progress to the infectious

stage when they come into contact with an infected human. Note that at this

stage, the vector partition does not incorporate immune class since mosquitoes

never recover from infection. Mosquitoes infective period ends with death due
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to its short life cycle (Hu, Lou, & Lu, 2009; Mojeeb et al., 2017; Putri & Ja-

haruddin, 2014).

In addition, we assume that some preventive measures α goes to reduce

the vector population.

Parameters and state variables

Explanation of state variables for the system with respect to time are pre-

sented in Table 1.

Table 1: Description of State Variables

State Variables Explanation

Sh(t) Susceptible humans at a given time t.

Ih(t) Infectious humans at a given time t.

Rh(t) Recovered humans at a given time t.

Sv(t) Susceptible mosquitoes at a given time t.

Iv(t) Infectious mosquitoes at a given time t.

From Table 1 the state variables described presents the total number of the

human and vector populations respectively at a given time. Taking into consid-

eration the aforementioned of the explanation of state variables, the description

of the SIRS-SI model is presented in Figure 1.
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Figure 1: Schematic diagram for the dynamics of malaria epidemic model.

Diagrammatically, from Figure 1 the compartmental model moves an in-

dividual of the respective population from one class to the other with an appro-

priate rate and it is represented by the thick lines. From the figure, the dash

lines from Iv to Sh show the transfer of the Plasmodium parasite from an in-

fected mosquito to a susceptible human provided a contact has occurred whiles

the dashed lines from Sv to Ih show that susceptible mosquitoes get infected

when they bite infected human provided there is a contact. Thus, it shows an

interaction between human and mosquito.

So the susceptible human Sh gets infected at a biting rate b and transmis-

sion probability rate βv of an adult female Anopheles mosquitoes. After that, the

susceptible human moves to infectious class Ih and then progresses to recovered

with partial immunity at rate γ. In addition, individuals who are given preven-

tion in Sh move to the removed class Rh at the rate α and recovered individuals

can die naturally or move to the susceptible class at rate ω and µh respectively.

Also, for the vector populations, mosquito in susceptible class Sv become
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infected due to biting rate and transmission probability and become infectious

until its die naturally (Bedada, Lemma, & Koya, 2015).

Now, considering the assumptions made and the interactions from Fig-

ure 1, the system of non-linear ordinary differential equations with saturation

incidence is given as:

Ṡh = Λh− βhbIvSh
Nh+m −µhSh−αSh +ωRh

İh = βhbIvSh
Nh+m −µhIh− γIh−δIh

Ṙh = γIh−µhRh−ωRh +αSh

Ṡv = Λv− βvbIhSv
Nh+m − (µv + cα)Sv

İv = βvbIhSv
Nh+m − (µv + cα)Iv,

(3.27)

where

Nv(t) = Sv(t)+ Iv(t) and Nh(t) = Sh(t)+ Ih(t)+Rh(t).

The description of parameters in Equations (3.27) is shown in Table 2.
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Table 2: Description of Parameters Used in the Model

Parameter Detailed Explanation

Λh Recruitment rate for humans.

Λv Recruitment rate for mosquitoes.

βh Transmission rate from infectious vector to a susceptible human.

βv Transmission rate from an infectious human to a susceptible vector.

µh Natural death rate for humans.

µv Natural death rate for mosquitoes.

δ Disease induced death rate.

γ Recovery rate.

α Prevention rate.

cα Prevention effort directed at reducing vector population.

ω Rate of loss of immunity for recovered individuals.

b Biting rate of the mosquitoes.

m Number of alternative host.

From Table 2, we have the detailed explanation of the parameters used in

the model respectively.

Model Analysis

In order for the model (3.27) to be well posed mathematically and epi-

demiologically, then all populations and sub-populations must be non-negative

for t > 0 and all the parameters must be positive. This can be achieved by de-

termining the positivity and feasible region for the model equation in (3.27).
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Positivity of Solution

Here, the non-negativity for the solution system would be described. Thus,

we will show that for each given non-empty initial conditions, results of the sys-

tem remains positive. The following proposition would be used to investigate

the positivity of the solutions of state variables for t > 0.

Proposition 1

Suppose that the initial conditions

{(Sh(0), Sv(0))> 0, (Ih(0), Rh(0), Iv(0))≥ 0} ∈Ω, (3.28)

then the solution set {Sh(t), Ih(t),Rh(t),Sv(t), Iv(t)} for Equation (3.27) is {Sh(t)>

0, Ih(t)> 0,Rh(t)> 0,Sv(t)> 0, Iv(t)> 0} for all t > 0.

Proof. We assume that

{(Sh(0), Sv(0))> 0, (Ih(0), Rh(0), Iv(0))≥ 0} ∈Ω. (3.29)

Then from Equation (3.27), the time derivative of the susceptible humans is

given as

dSh

dt
= Λh−

βhbIvSh

Nh +m
− (µh +α)Sh +ωRh ≥−(µh +α)Sh. (3.30)

It follows that

dSh

dt
≥−(µh +α)Sh. (3.31)

Now, we have

∫ dSh

dt
≥−

∫
(µh +α)Sh. (3.32)

This implies that

∫ dSh

Sh
≥−(µh +α)

∫
dt,
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and

ln |Sh| ≥ −(µh +α)t + k, (3.33)

where k is a constant. Note that Equation (3.33) simplifies to

Sh(t)≥ e−(µh+α)t+k (3.34)

and can also be expressed as

Sh(t)≥ A e−(µh+α)t , (3.35)

where A = ek. Taking the given initial condition at t = 0, we have Sh(0) ≥ A.

This implies that

Sh(t)≥ Sh(0) e−(µh+α)t ≥ 0. (3.36)

Again, the time derivative of an infectious human in Equation (3.27) is given as

dIh

dt
=

βhbIvSh

Nh +m
− (µh + γ+δ)Ih ≥−(µh + γ+δ)Ih. (3.37)

It follows that

dIh

dt
≥−(µh + γ+δ)Ih. (3.38)

So, this gives

∫ dIh

dt
≥−

∫
(µh + γ+δ)Ih (3.39)

and it simplifies to

Ih(t)≥ e−(µh+γ+δ)t+k, (3.40)

where k is a constant. The expression can now be written as

Ih(t)≥ B e−(µh+γ+δ)t , (3.41)
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where B = ek. With the given initial condition and at t = 0, we have Ih(0)≥ B.

Therefore,

Ih(t)≥ Ih(0) e−(µh+α)t ≥ 0. (3.42)

Also, the time derivative of the recovered class in Equation (3.27) is given by

dRh

dt
= γIh− (µh +ω)Rh +αSh ≥−(µh +ω)Rh

dRh

dt
≥−(µh +ω)Rh.

(3.43)

This implies that ∫ dRh

dt
≥−

∫
(µh +ω)Rh

(3.44)

and can be simplified to

Rh(t)≥ e−(µh+ω)t+k, (3.45)

where k is a constant. The inequality is now written as

Rh(t)≥C e−(µh+ω)t , (3.46)

where C = ek. Using the given initial condition and at t = 0, we have that

Rh(0)≥C. Therefore,

Rh(t)≥ Rh(0) e−(µh+α)t ≥ 0. (3.47)

Similarly, the time derivative of susceptible vector is given as

dSv

dt
= Λv−

βvbIhSv

Nh +m
− (µv +αc)Sv ≥−(µv +αc)Sv. (3.48)

This gives

dSv

dt
≥−(µv +αc)Sv. (3.49)

So it implies that

∫ dSv

dt
≥−

∫
(µv +αc)Sv, (3.50)
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and it simplifies to

Sv(t)≥ e−(µv+αc)t+k. (3.51)

Note that k is a constant. So we have that

Sv(t)≥ D e−(µv+αc)t , (3.52)

where D = ek. Using the given initial condition and at t = 0, we have Sv(0)≥D.

Hence,

Sv(t)≥ Sv(0) e−(µh+αc)t ≥ 0. (3.53)

Lastly, for the infectious class, the time derivative in Equation (3.27) is given as

dIv

dt
=

βvbIhSv

Nh +m
− (µv +αc)Iv ≥−(µv +αc)Iv.

This is then rewritten as

dIv

dt
≥−(µv +αc)Iv. (3.54)

Integrating Equation (3.31) gives

∫ dIv

dt
≥−

∫
(µv +αc)Iv. (3.55)

So, it simplifies to

Iv(t)≥ e−(µv+αc)t+k, (3.56)

where k is a constant. Now, we have

Iv(t)≥ E e−(µv+αc)t , (3.57)

where E = ek. Also, using the given initial condition and at t = 0, we have that

Iv(0)≥ D and this gives

Iv(t)≥ Iv(0) e−(µh+αc)t ≥ 0. (3.58)
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Since the computation for feasible region and positivity for both the vector

and the host population yields a positive results, we can therefore conclude that

the feasible region denoted by Ω for the system of models in Equation (3.27) is

defined as

Ω :=
{
(Sh, Ih,Rh,Sv, Iv) ∈ R5

+ : Sh + Ih +Rh ≤
Λh

µh
, Sv + Iv ≤

Λv

(µv +αc)

}
.

(3.59)

The feasible region in Equation (3.59) implies that the ordinary differen-

tial equations for the epidemic model in Equation (3.27) is well-defined epi-

demiologically and positively invariant. Therefore the following proposition

would be used to investigate the assumption for invariant.

Proposition 2

The region Π = Πh×Πv defined by

Πh :=
{
(Sh, Ih,Rh) ∈ R3

+ : Sh + Ih +Rh ≤
Λh

µh
, Sh > 0, Ih > 0, Rh > 0

}
Πv :=

{
(Sv, Iv) ∈ R2

+ : Sv + Iv ≤
Λv

(µv + cα)
, Sv > 0, Iv > 0

}
(3.60)

is the feasible region for the system.

Proof. Using the expression for total human population given as Nh = Sh+ Ih+

Rh, we have

Ṅh = Ṡh + İh + Ṙh

Ṅh = Λh− (Sh + Ih +Rh)µh−δIh

Ṅh = Λh−µhNh−δIh. (3.61)

It follows directly from Equation (3.61) that

Ṅh +µhNh = Λh−δIh. (3.62)
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We then have

Ṅh +µhNh ≤ Λh. (3.63)

Using integrating factor eµht , the computation for solving Equation (3.63) is

given as:

eµhtṄh + eµhtµhNh ≤ eµht
Λh

d
dt

(
eµhtNh

)
≤ eµht

Λh

eµhtNh(t)≤ Λh

∫
eµht dt

eµhtNh(t)≤
Λh

µh
eµht + k1,

(3.64)

where k1 is the constant of integration. Now, it follows that

Nh(t)≤
Λh

µh
+ k1e−µht . (3.65)

With the use of the initial condition, Nh(0) = N0, the constant k1 is N0− Λh
µv

. So,

Equation (3.65) now becomes

Nh(t)+
(

Λh

µh
−N0

)
≤ Λh

µh
. (3.66)

Taking the limit on both sides of Equation (3.66) gives

lim
t→∞

(
Nh(t)+

(
Λh

µh
−N0

))
≤ lim

t→∞

(
Λh

µh

)
, (3.67)

which then simplifies to

lim
t→∞

Nh(t)≤
Λh

µh
= Kh. (3.68)

Hence, the host population is bounded above by the carrying capacity Λh
µh

and its

feasible solution set can be defined as

Πh =

{
(Sh, Ih,Rh) ∈ R3

+ : Nh ≤
Λh

µh
= Kh, Sh > 0, Ih ≥ 0, Rh ≥ 0

}
. (3.69)
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Similarly, for total population of the vector, we have

Ṅv = Ṡv + İv

Ṅv = Λv− (µv + cα)(Sv + Iv)

Ṅv = Λv− (µv + cα)Nv.

(3.70)

This follows that

Ṅv +(µv + cα)Nv ≤ Λv. (3.71)

The computation for solving Equation (3.71) using the integrating factor

e(µv+cα)t is given as

e(µv+cα)tṄv + e(µv+cα)t(µv + cα)Nv ≤ e(µv+cα)t
Λv

d
dt

(
e(µv+cα)tNv

)
≤ e(µv+cα)t

Λv(
e(µv+cα)tNv(t)

)
≤ Λv

∫
e(µv+cα)t dt

e(µv+cα)tNv(t)≤
Λv

(µv + cα)
e(µv+cα)t + k2,

(3.72)

where k2 is the constant of integration. Now, we have

Nv(t)≤
Λv

µv
+ k2e−(µv+cα)t . (3.73)

Using the initial condition, Nv(0) = N0, k2 = N0− Λv
Nv

. So, Equation (3.73) now

becomes

Nv(t)+
(

Λv

(µv + cα)
−N0

)
e(µv+cα)t ≤ Λv

(µv + cα)
. (3.74)

Hence taking the limits of Equation (3.74) gives us

lim
t→∞

(
Nv(t)+

(
Λv

(µv + cα)
−N0

)
eµvt
)
≤ lim

t→∞

(
Λv

(µv + cα)

)
=

Λv

(µv + cα)
.

(3.75)

Thus

lim
t→∞

(Nv)≤
Λv

(µv + cα)
= Kv. (3.76)
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This is also positive and bounded above by its carrying capacity. So the feasible

region is therefore defined as

Πv :=
{
(Sv, Iv) ∈ R2

+ : Nv ≤
Λv

(µv + cα)
= Kv, Sv > 0, Iv ≥ 0

}
.

The system of non linear differential equation in Equation (3.27) is rewritten

using Nh replaced by the carrying capacity Kh, as

Ṡh = Λh− βhbIvSh
Kh+m −µhSh−αSh +ωRh

İh = βhbIvSh
Kh+m −µhIh− γIh−δIh

Ṙh = γIh−µhRh−ωRh +αSh

Ṡv = Λv− βvbIhSv
Kh+m − (µv + cα)Sv

İv = βvbIhSv
Kh+m − (µv + cα)Iv,

(3.77)

Existence of Equilibrium Points

The equilibrium points are the solutions of

Ṡh = İh = Ṙh = Ṡv = İv = 0. (3.78)

The system has a unique DFE and EE point, denoted respectively by

Θ
0 =

(
S0

h, I
0
h ,R

0
h,S

0
v , I

0
v
)

and

Θ
1 =

(
S1

h, I
1
h ,R

1
h,S

1
v , I

1
v
)
.

The DFE is given by

Θ
0 =

[
Λh(µh +ω)

µh(α+µh +ω)
, 0,

Λhα

µh(α+µh +ω)
,

Λv

αc+µv
,0
]
. (3.79)
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The EE is given by

Θ
1 =

(
S1

h, I
1
h ,R

1
h,S

1
v , I

1
v
)

where

S1
h =

W [(Λhβvb+µh)(µh +ω)+((δ+ γ)µh +δω)(Nh +m)(µv +αc)]
Yh +Zh

I1
h =

ΛhΛvb2βhβv(µh +ω)X
Yh +Zh

R1
h =

ΛhΛvb2βhβvγ+W [Λhβvαb− (Kh +m)(µv +αc)(µh(δ−α)−δγ)]

Yh +Zh

S1
v =

(Kh +m) [µh(µh +δ+ω)+δω]+ (Wµh(µh +α+ω))(Kh +m)

Yv +Zv

I1
v =

ΛhΛvb2βhβv(ω+µh)X
Yv +Zv

,

where

W = (µh +δ+ γ)(µv +αc)(Kh +m)

X =
[
(µh(µh +α+ω))(µh + γ+δ)(µv +αc)2(Kh +m)2]

Yh = Λvβhβvb2 [(µh +δ+ γ)(µh +ω)−δω]

Zh = βvb(µh + γ+δ)(µv +αc) [µh(µh +ω+α)]

Yv = Λhβhβvb2(µh +ω)

Zv = [βhb(µv +αc)((µh +δ+ γ)(µh +ω)− γω)] (Kh +m)

The Basic Reproduction Number

This section describes how the basic reproduction number R0 was com-

puted. One important aspect of R0 is that, it determines whether a disease will
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persist or die off if there is an outbreak or there is a small perturbation of the sys-

tem. Therefore, using next generation matrix approach, the appearance of new

cases of infections and the rate of transfer of infectious from one compartment

to a different one in the systems of equations in Equation (3.77) is

Fi =


βhbIvSh
Kh+m

βvbIhSv
Kh+m

 and Vi =


Ihδ+ Ihγ+ Ihuh

(uv + cα)Iv

 .
So, we have F and V to be given as

F =


0 Shbβh

Kh+m

Svbβv
Kh+m 0

 and V =


δ+ γ+µh 0

0 αc+µv

 .

The next generation matrix G = FV−1, at DFE is given by

G =


0 (αc+µv)(Λhµh+Λhω)bβh

(αµh+µ2
h+µhω)(Kh+m)

Λvbβv(δ+γ+µh)
(αc+µv)(Kh+m) 0

.

The eigenvalues obtained from G are

R1(α) = +

√
ΛhΛvb2βhβv(µh +ω)

(α+µh +ω)(δ+ γ+µh)µh(αc+µv)
2(Kh +m)2

R2(α) =−

√
ΛhΛvb2βhβv(µh +ω)

(α+µh +ω)(δ+ γ+µh)µh(αc+µv)
2(Kh +m)2 .

(3.80)

The spectral radius is the dominant eigenvalues obtained in Equation (3.80). The

basic reproduction number, with prevention at the rate α, denoted by R0(α), is

given by

R0(α) =

√
ΛhΛvb2βhβv(µh +ω)

µh (α+µh +ω)(δ+ γ+µh)(αc+µv)
2(Kh +m)2 . (3.81)
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Without prevention α = 0 the corresponding basic reproduction number

R0(0) =

√
ΛhΛvb2βhβv

µh(δ+ γ+µh)(µv)
2(Kh +m)2 =R0. (3.82)

It is easy to see that

R0(α)≤R0. (3.83)

Equation (3.83) indicates that it is easier to control the spread of an infectious

disease when there is prevention than without prevention. Remark 1

From Equation (3.81), it can be estimated that higher values of Λh,Λv,b,βh,βv,µh

and ω can lead to the outbreak of malaria and on the other hand, small values of

Λh,Λv,b,βh,βv,µh and ω, the disease dies out.

From Equation (3.82), an infective human is initiated into the susceptible

population bitten by Λvb
(µv)(Kh+m) mosquitoes per unit time during the infective pe-

riod of Λvb
(µv)(Kh+m) ×

1
(µh+δ+γ) .

A proportion βv

(
Λvb

(µv)(Kh+m) ×
1

(µh+δ+γ)

)
of the mosquitoes become infectious.

Similarly, an infective mosquito disseminates
(

Λhb
(µv)(Kh+m) ×

1
(µh+δ+γ)

)
bites into

human population during its entire life and a proportion

βh

(
Λhb

(µv)(Kh+m) ×
1

(µh+δ+γ)

)
of these bites becomes infectious in the human pop-

ulation. Therefore, the geometric mean of these quantities that is equal to R0,

produces secondary infections.

Endemic equilibrium points expressed in terms of basic reproduction number

The endemic equilibrium expressed in terms of R0 is given as

S1
h =

ΛhΛvb2βhβv(µh+ω)(µh(µh+γ+δ)+ω(µh+δ)

R2
0(α)(µh(µh+α+ω))

+Λhbβv(µh +ω)W

Yh +Zh

I1
h =

X(R2
0(α)−1)

Yh +Zh
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R1
h =

W
[

R2
0(α)γ(µh(µh+α+ω))

µh+ω
+µh(α− γ)+δα

]
+Λhβvbα

Yh +Zh

S1
v =

ΛhΛvb2βhβv(µh+ω)

R2
0(α)(µv+cα)

+(Λvbβh(µh(µh +δ+ γ)+ω(µh +δ))(Kh +m)

Yv +Zv

I1
v =

X(R2
0(α)−1)

Yv +Zv
.

Local Stability Analysis

This section will establish stability of EE and DFE locally and globally.

The following theorems would be used to investigates the global and local sta-

bility of DFE and EE.

Local stability of disease free equilibrium point

To investigate the stability of DFE locally in Ω we use the following the-

orem.

Theorem 4

The disease free equilibrium point for the model in 3.27 is locally asymp-

totically stable in Ω if R0 < 1 and unstable if R0 > 1.

Proof. We will begin the proof by linearizing the system of differential equation

in Equation 3.77 at the DFE. The Jacobian for the linearization denoted by J is
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given as

J =



− Ivbβh
Kh+m −α−µh 0 ω 0 − Shbβh

Kh+m

Ivbβh
Kh+m −δ− γ−µh 0 0 Shbβh

Kh+m

α γ −µh−ω 0 0

0 − Svbβv
Kh+m 0 − Ihbβv

Kh+m −αc−µv 0

0 Svbβv
Kh+m 0 Ihbβv

Kh+m −αc−µv



.

Evaluating at DFE gives J(Θ0) as

−α−µh 0 ω 0 − (Λhµh+Λhω)bβh

(αµh+µ2
h+µhω)(Kh+m)

0 −δ− γ−µh 0 0 (Λhµh+Λhω)bβh

(αµh+µ2
h+µhω)(Kh+m)

α γ −µh−ω 0 0

0 − Λvbβv
(αc+µv)(Kh+m) 0 −αc−µv 0

0 Λvbβv
(αc+µv)(Kh+m) 0 0 −αc−µv



.

(3.84)

The eigenvalues obtained from the Jacobian matrix in Equation (3.84)

would be used to examine the stability of DFE locally and it states that DFE

will be locally stable if the eigenvalues are negative or has a negative real parts.

The eigenvalues of the matrix J(Θ0) are

λ1 =−(α+ω+uh), λ2 =−µh, λ3 =−(µv +αc),

λ4 =−K(B+
√

C),λ5 =−K(B−
√

C).
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Here,

K =
1

2(Kh +m)(µv +αc)(α+ω+µh)µh

B = (µv +αc)(Kh +m) [(µh + γ+δ+µv +αc)(µh(µh +α+ω))]

C =
[
4ΛhΛvb2βhβv(ω+µh)(µv +αc)(µh(µh +α+ω))

]
+(Kh +m)2 (µv +αc)2

[
((µh + γ+δ)− (µv +αc))2 (µh(µh +α+ω))

]
.

It is clear that the eigenvalues λ1,λ2,λ3 and λ4 are all negatives. The

eigenvalue λ5 will be negative provided that

B−
√

C > 0, or equivalently B2 >C.

Now, B2−C > 0 simplifies

(µh +α+ω)(µv +αc)
[
−4ΛhΛvb2

βhβv(µh +ω)
]

+(µh +α+ω)(µv +αc)[
4µh(α+ω+µh)(µh + γ+δ)(Kh +m)2(µv +αc)2]> 0. (3.85)

Equation (3.85) simplifies to

−4ΛhΛvb2
βhβv(µh +ω)

>−4µh(α+ω+µh)(µh + γ+δ)(Kh +m)2(µv +αc)2,

and can further be written as

ΛhΛvb2βhβv(µh +ω)

µh(α+ω+µh)(µh + γ+δ)(Kh +m)2(µv +αc)2 < 1.

Hence,

R0
2 < 1. (3.86)

Since the threshold parameter is less than one(1), as in Equation (3.86), we have

shown that the DFE is asymptotically stable.
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Local stability of endemic equilibrium point

The changes of the infectious class of the EE will be used to examine the

local stability.

Theorem 5

The EE is asymptomatically stable if R0(α)> 1 and unstable if R0(α)<

1.

We will elaborate on the theorem by expressing the infectious classes of

the EE in terms of R0(α). So, we have the given as

I1
h =

X(R2
0(α)−1)

Yh +Zh

I1
v =

X(R2
0(α)−1)

Yv +Zv
.

(3.87)

From I1
v and I1

h , the endemic condition exists only when Equation (3.87) are

positive. Thus, we have

R0
2(α)−1 > 0, (3.88)

since both the numerator and denominator is positive. Hence, EE is locally

asymptotically stable if R0
2(α)> 1.

Global Stability Analysis

Here, we will investigate global stability analysis for DFE and the EE in

the feasible region Ω.

Global stability of disease free equilibrium point

To ensure that DFE is independent of the primary size of the sub-population

then it is essential to show that the DFE is globally asymptotically stable. One

of the approach to study global asymptotic stability of DFE is the construction
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of an appropriate Lyapunov function (Lazarus, 2018). The following theorem

describes the global stability.

Theorem 6

The DFE is asymptotically stable globally in Ω provided R0 ≤ 1.

Proof. Considering a Lyapunov function

V = k1Ih + k2Iv, where k1 > 0 ,k2 > 0.

The time derivative of the Lyapunov function V gives the following expression.

V̇ = k1İh + k2İv.

Substituting İh and İv into the equation above gives us

V̇ = k1

[
βhbIvSh

Kh +m
− (µh + γ+δ)Ih

]
+ k2

[
βvbIhSv

Kh +m
− (µv +αc)Iv

]
. (3.89)

Note that

Sh =
Λh(µh +ω)

µh(µh +α+ω)
and Sv =

Λv

µv +αc
. (3.90)

Substituting Equation (3.90) into Equation (3.89) gives

V̇ = k1

[
βhbIvΛh(µh +ω)

µh(µh +α+ω)(Kh +m)
− (µh + γ+δ)Ih

]
+ k2

[
βvbIhΛv

(µv +αc)(Kh +m)
− (µv +αc)Iv

]
.

(3.91)

Grouping Equation (3.91) into Ih and Iv gives

V̇ =

[
k2

βvbΛv

(µv +αc)(Kh +m)
− k1(µh + γ+δ)

]
Ih

+

[
k1

βhbΛh(µh +ω)

µh(µh +α+ω)(Kh +m)
− k2(µv +αc)

]
Iv.

(3.92)

Further simplification gives

V̇ = k1(µh + γ+δ)

[
k2βvbΛv

k1(µh + γ+δ)(µv +αc)(Kh +m)
−1
]

Ih

+ k2(µv +αc)
[

k1βhbΛh(µh +ω)

k2(µv +αc)µh(µh +α+ω)(Kh +m)
−1
]

Iv.

(3.93)
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Considering the coefficient of Iv in Equation (3.92), we choose the constant

k1,k2 is respectively as

k1 = (µv +αc) and k2 =
βhbΛh(µh +ω)

µh(µh +α+ω)(Kh +m)
.

Substituting k1,k2 into Equation (3.92) gives

V̇ = (µv +αc)(µh + γ+δ)

 ΛhΛvβhb2βv(µh +ω)

µh(µh +α+ω)(µh + γ+δ)
(µv +αc)2(Kh +m)2

−1

 Ih

+
βhbΛh(µh +ω)(µv +αc)
µh(µh +α+ω)(Kh +m)

 µh(µh +α+ω)(Kh +m)
(µv +αc)βhbΛh(µh +ω)

βhbΛh(µh +ω)(µv +αc)
µh(µh +α+ω)(Kh +m)

−1

 Iv.

(3.94)

Simplifying Equation (3.94) gives

V̇ = (µv +αc)(µh + γ+δ)

 ΛhΛvβhb2βv(µh +ω)

µh(µh +α+ω)(µh + γ+δ)
(µv +αc)2(Kh +m)2

−1

 Ih, (3.95)

which can be expressed in terms of R0 as

V̇ = (µv +αc)(µh + γ+δ)
[
R0

2−1
]

Ih. (3.96)

Therefore, 
V̇ = 0 if R0

2 = 1

V̇ < 0 if R0
2 < 1

(3.97)

Hence, the DFE is globally asymptotically stable in Ω if R0
2 ≤ 1.
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Global stability of endemic equilibrium point

The following theorem will be used to prove the stability of the EE glob-

ally.

Theorem 7

The EE is globally asymptotically stable in Ω if R0 > 1.

Proof. We will begin this proof by defining logarithmic Lyapunov function as

V =

(
Sh−S1

h−S1
h log

Sh

S1
h

)
+

(
Ih− I1

h − I1
h log

Ih

I1
h

)
+

(
Rh−R1

h−R1
h log

Rh

R1
h

)
+

(
Sv−S1

v−S1
v log

Sv

S1
v

)
+

(
Iv− I1

v − I1
v log

Iv

I1
v

)
.

The time derivative of V is represented as

V̇ =

(
1−

S1
h

Sh

)
Ṡh +

(
1−

I1
h

Ih

)
İh +

(
Rh−

R1
h

Rh

)
Ṙh

+

(
Sv−S1

v−
S1

v
Sv

)
Ṡv +

(
1− I1

v
Iv

)
İv.

(3.98)

Substitute Ṡh, İh, Ṙh, Ṡv, İv into Equation (3.98) gives us

V̇ =

(
Sh−S1

h
Sh

)[
Λh−

βhbIvSh

Kh +m
− (µh +α)Sh +ωRh

]
+

(
Ih− I1

h
Ih

)[
βhbIvSh

Kh +m
− (µh + γ+δ)Ih

]
+

(
Rh−R1

h
Rh

)
[γIh− (µh +α)Rh]

+

(
Sv−S1

v
Sv

)[
Λv−

βvbIhSv

Kh +m
− (µv +αc)Sv

]
+

(
Iv− I1

v
Iv

)[
βvbIhSv

Kh +m
− (µv +αc)Iv

]
,

(3.99)
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which can be expressed as

V̇ =

(
Sh−S1

h
Sh

)[(
βhbI1

v S1
h

K1
h +m

+(µh +α)S1
h−ωR1

h

)]
−
(

Sh−S1
h

Sh

)[(
βhbIvSh

Kh +m
+(µh +α)Sh−ωRh

)]
+

(
Ih− I1

h
Ih

)[
(µh + γ+δ)I1

h − (µh + γ+δ)Ih
]

+

(
Rh−R1

h
Rh

)[
(µh +α)Rh− (µh +α)R1

h
]

+

(
Sv−S1

v
Sv

)[(
βvbI1

h S1
v

K1
h +m

+(µv +αc)S1
v

)]
−
(

Sv−S1
v

Sv

)[(
βvbIhSv

Kh +m
− (µv +αc)Sv

)]
+

(
Iv− I1

v
Iv

)[
(µv +αc)(Iv− I1

v )
]
.

(3.100)

Further simplification of Equation (3.100) is of the form

V̇ =

(
Sh−S1

h
Sh

)[
S1

v

(
βhbI1

v

K1
h +m

+µh +α

)]
−
(

Sh−S1
h

Sh

)[(
Sh

βhbIv

Kh +m
+µh +α

)
+ω(Rh−R1

h)

]
+

(
Ih− I1

h
Ih

)[
(µh + γ+δ)(I1

h − Ih)
]

+

(
Rh−R1

h
Rh

)
[(µh +α)(Rh−Rh)]

+

(
Sv−S1

v
Sv

)[
S1

v

(
βvbI1

h

K1
h +m

+(µv +αc)
)]

−
(

Sv−S1
v

Sv

)[
Sv

(
βvbIh

Kh +m
− (µv +αc)

)]
+

(
Iv− I1

v
Iv

)[
(µv +αc)(Iv− I1

v )
]
.

(3.101)

For V̇ = 0 and V̇ > 0 in Equation (3.101) then it must obey the following con-

dition respectively.

• The expression Sh = S1
h, Ih = I1

h ,Rh = R1
h,Sv = S1

v and Iv = I1
v .

• The expression Iv < I1
v , Ih < I1

h ,Sh < S1
h and Sv < S1

v whiles Rh = R1
h.
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Note that S1
h, I1

h , R1
h, S1

v , I1
v , are the EE states. Hence, the EE is globally asymp-

tomatically stable if the condition above is true.

Parameter Estimation using the Least Square Method

The main tool for estimating the parameters of the model given in Equa-

tion (3.77), is an implementation of the least-squares method in Python. The

data is the daily confirmed cases in Ghana, obtained from W.H.O., from 2004 to

2017.

Demographic estimates

Here, we pre-estimates some demographic parameters such as Λh and µh

using informations obtained from (FactBook, 2019) and (World Health Orga-

nization, 2019b) . The total population of Ghana as of 2016 was given as

28,207,000 and the life expectancy at birth was given as 64 years (World Health

Organization, 2019b).

Hence, the estimated daily natural death µh rate is given as

µh =
1

64×365
= 0.000042808219.

We assume that the birth rate = death rate = µh.

The carrying capacity for humans Kh, is given as

Kh =
Λh

µh
,

so the recruitment rate is given by

Λh = Kh×µh.

Therefore, the estimated daily recruitment rate for human is computed as

Λh = Kh×µh = 28000000×0.000042808219.≈ 1200.
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The life expectancy for mosquito to live is 30 days (World Health Organi-

zation, 2018). Hence, the estimated death rate for mosquito was given as

µv =
1
30

= 0.03

The remaining parameters Λv,b,βh,βv,γ,α,ω,δ and m were obtained from fit-

ting the model solution to the observed infection data.

Observed data sets and the curve fitting process

Here, data for confirmed cases from Ghana were obtained from (World

Health Organization, 2019a). The data range from the year 2004 to the year

2017, as shown in Table 3.

Table 3: Data on Confirmed Cases of Malaria in Ghana

Year Confirmed Cases

2004 475441

2005 655093

2006 472255

2007 476484

2008 1094483

2009 1104370

2010 1071637

2011 1041260

2012 3755166

2013 1639451

2014 3415912

2015 4319919

2016 4535167

2017 4348694

Source: World Health Organization (2019a)
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The data points in Table 3 is graphically represented in Figure 2.

Figure 2: Observed infection cases from the World Health Organization.

From Figure 2, the blue star represents the data points. The least-squares

curve of best fit is shown in Figure 3. The fit was obtained using an implemen-

tation of the least-squares method in Python.

Figure 3: Model 3.27 fitted to the data in Table 1.

From Figure 3 the red solid coloured curve represents the curve of best fit.

The corresponding estimated parameter obtained from the demographic point
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of view were maintained. Graphically the best fit diagram is presented in Figure

3. The parameters attained from the best fit and demographic data are given in

Table 4.

Table 4: Parameters obtained from the Best Fit and Demographics

Parameters Units (day−1) Values Sources

Λh day−1 1200 Estimated from WHO

Λv day−1 13000 Estimated from data

βh day−1 0.70000223 Estimated from data

βv day−1 0.60000000 Estimated from data

µh day−1 1/(64×365) WFB and WHO

µv day−1 0.03 Estimated from data

δ day−1 0.00900000 Estimated from data

γ day−1 [0.05,0.2] Control parameter

α day−1 [0.05,0.8] Control parameter

ω day−1 0.00100000 Estimated from data

b day−1 0.50223306 Estimated from data

c day−1 [0,1] Constant of proportionality

m day−1 5 Assumed

From Table 4 the estimated daily optimal parameters were obtained from

the best fits.

Solution of the Model with Parameter Values in Table 4

With the parameters in Table (4) and the initial populations for the state

variables given by Sh(0) = 27500000, Ih(0) = 500000, Rh(0) = 0, Sv(0) =

138000000, Iv(0) = 2000000, the plots of the graph for the human populations

is presented in Figure 4.

54

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Figure 4: Plot of human populations.

From Figure 4, the infected human population Ih increases from its initial

population to about 18 million, and then decreases steadily towards its endemic

component. The susceptible human population Sh reduces from its initial popu-

lation, while the recovered human population Rh, it increases, as expected. The

corresponding vector populations are presented in Figure 5.

Figure 5: Plot of vector populations.
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From Figure 5, we see that the susceptible vector population Sv decreases

with time, while the infected vector population Iv increases initially and then de-

creases towards a non-zero component. The R0, computed from the parameters

in Table 1 gives

R0 = 1.0290549263859299 > 1.

This value of R0 > 1 explains why Ih 6= 0, and Iv 6= 0.

In the next section, we examine the effects on human and vector popula-

tions, with values of c = 0.0,0.1 and c = 0.2. For each value of c, we use com-

bination of increasing values of α = 0.2,0.4,0.60.8, and γ = 0.2,0.4,0.6,0.8.

Varying Prevention and Treatment Levels with c = 0

In this section, we investigate the effects on infection levels for both hu-

man and vector populations when c= 0, with a combination of different rates for

treatment (γ) and prevention (α). The results are shown in Figure 6 for infected

human populations, and in Figure 7 for infected vector populations.

Figure 6: Infected human populations, with c = 0.

In Figure 6, we observe a reduction in the number of infected humans
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with increasing prevention and treatment rates; but not much reduction in the

infected vector population. The plots for the vector population is represented in

Figure 7

Figure 7: Infected vector populations, with c = 0.

In Figure 7, we observe a reduction in the number of infective human

populations, but not much reduction in the infected vector population.

Varying Prevention and Treatment Levels with c = 0.1

The plots in Figure 8 show changes of the infected class for human popu-

lations when treatment (γ) and prevention (α) are varied at the same rates, with

c = 0.1.
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Figure 8: Infected human populations, with c = 0.1.

For Figure 8, we observed that increasing both prevention and treatment

from 20% through to 80% decreases infected human population. The corre-

sponding vector population is shown in Figure 9

Figure 9: Infected vector populations, with c = 0.1.

Observation in Figure 9 shows that increasing both prevention and treat-

ment from 20% through to 80% also decreases the infected vector population
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rapidly.

Varying Prevention and Treatment Levels with c = 0.20

Varying treatment and prevention at the same rate, with c = 0.20, gives

the results shown in Figures 10, and 11.

Figure 10: Infected human populations, with c = 0.2.

From Figure 10, it was observed that increasing both treatment and pre-

vention from 20% through to 80% decreases infected human population to a

disease free state much faster. The corresponding vector population is given in

Figure 11.
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Figure 11: Infected vector populations, with c = 0.2.

From Figure 11, it was also observed that increasing both treatment and

prevention from 20% through to 80% decreases effectively the infected vector

population.

Observations

The following observation were made for effective treatment and preven-

tion.

1. Increasing the constant c reduces the vector population.

2. With prevention effort at 0.2 and treatment effort at 0.2, the disease stays

high and more people lives with the disease.

3. Increasing prevention and treatment rate to about 0.8 greatly reduces the

prevalence of the disease.

4. The smaller the infected populations the less likelihood of transmission to

a susceptible individual.

Remark 2
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The cost of achieving the level of prevention and treatment needed to re-

duce both the incidence and prevalence has not been factored into the model.

We will therefore, formulate and Optimal Control Problem, incorporating the

cost of treatment and prevention.

Optimal Control Formulation

In this section, a strategy for effective control of malaria transmission as

an optimal control problem will be formulated. The purpose of this formulation

is to figure ou the best treatment and prevention strategy that minimizes the inci-

dence and prevalence, while keeping the cost of prevention and treatment as low

as possible. This will be done by first, defining an appropriate cost functional.

Then, Pontryagin’s Maximum Principle will be used to determine an op-

timal combination of the prevention and treatment efforts needed to reduce the

transmission. Numerical simulations will then be performed to determine the

evolution of the disease, over a finite time horizon.

Formulating optimal control

Let u1(t) represent the rate of prevention, and u2(t), the rate at which

infected individuals get treatment. Replacing α and γ in the model Equation

(3.77) with the controls u1(t) and u2(t) respectively, gives

Ṡh = Λh−
βhbIvSh

Kh +m
−µhSh−u1(t)Sh +ωRh

İh =
βhbIvSh

Kh +m
−µhIh−u2(t)Ih−δIh

Ṙh = u2(t)Ih−µhRh−ωRh +u1(t)Sh

Ṡv = Λv−
βvbIhSv

Kh +m
− (µv +u1(t)c)Sv

İv =
βvbIhSv

Kh +m
− (µv +u1(t)c)Iv,

(3.102)
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The objective functional was defined as

J(u1,u2) = Ih(T )+ Iv(T )+
1
2

∫ T

0

(
B1u2

1 +B2u2
2
)

dt, (3.103)

with u1,u2 ∈ U, the set of admissible controls of Lebesgue measure defined as

U= {u1(t),u2(t) ∈ L(0,T )|0≤ ui ≤ 1}

The terms 1
2B1u2

1 and 1
2B2u2

2, (B1,B2 > 0), gives the cost associated with

implementing prevention and treatment respectively. The interval [0, T ] is the

time horizon, and T is the terminal time. Ih(T ) and Iv(T ) represent the number

of infected humans and vectors respectively, at the end of the terminal time. The

maximum values for u1 and u2 are given by u1max and u2max respectively. The

choice of the quadratic cost for the controls indicates that the cost of applying

the controls is nonlinear.

The optimal control pair (u∗1,u
∗
2), is given by

J(u∗1,u
∗
2) = min

u1,u2
{J(u1,u2) : (u1,u2) ∈ U)}. (3.104)

Existence of the Optimal Control Pair

The necessarily condition for the existence of the optimal control pair

proposed by (Flemming & Rishel, 1975) cited in (Panetta & Fister, 2000) and

(Yusuf & Benyah, 2012) is established in this section. According to (Flemming

& Rishel, 1975), the existence of an optimal control pair (u∗1,u
∗
2) is guaranteed

by the compactness and the states, and the convexity of the problem. Therefore,

the essential requirement cited in (Yusuf & Benyah, 2012) is given by

1. The set of all solutions to system (3.102) with corresponding admissible

control functions in U is non-empty.

2. The state system can be written as a linear function of the control variables

u′is, with coefficients depending on time and the state variables.
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3. The integrand of J(u1,u2) is convex on U and is bounded above by

B1‖(u1,u2)‖2−B2

where, B1,B2 > 0.

First order necessary conditions

In this section, we establish conditions that will help us to determine the

optimal control functions. Using Pontryagin’s Maximum Principles the neces-

sarily conditions is derived using the following theorem.

Theorem 8

Suppose (u∗1,u
∗
2) is a pair of optimal control, with corresponding opti-

mal states, S∗h, I
∗
h ,R
∗
h,S
∗
v , I
∗
v that minimizes the objective functional in Equation

(3.103), then there is co-state variables λ∗1, · · · ,λ∗5 such that the following neces-

sary conditions are satisfied:

1. State equations:
dSh

dt
=

∂H
∂λ1

, · · · , dIv

dt
=

∂H
∂λ5

,

where,

dSh

dt
= Λh−

βhbIvSh

Kh +m
−µhSh−u1(t)Sh +ωRh

dIh

dt
=

βhbIvSh

Kh +m
−µhIh−u2(t)Ih−δIh

dRh

dt
= u2(t)Ih−µhRh−ωRh +u1(t)Sh

dSv

dt
= Λv−

βvbIhSv

Kh +m
− (µv +u1(t)c)Sv

dIv

dt
=

βvbIhSv

Kh +m
− Iv(µv +u1(t)c),

(3.105)

with

Sh(0)> 0, Ih(0)> 0, Rh(0)> 0, Sv(0)> 0, Iv(0)> 0

as the initial conditions.
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2. Co-state equations:

dλ1

dt
=− ∂H

∂Sh
, · · · , dλ5

dt
=−∂H

∂Iv
,

given by,

dλ1

dt
=−

[(
− βhbIv

Kh +m
−µh−u1(t)

)
λ1 +

βhbIvλ2

Kh +m
+u1(t)λ3

]
dλ2

dt
=−

[
−(µh +u2(t)+δ)λ2 +u2(t)λ3−

βvbSvλ4

Kh +m
+

βvbSvλ5

Kh +m

]
dλ3

dt
=− [ωλ1− (ω+µh)λ3]

dλ4

dt
=−

[(
− βvbIh

Kh +m
− (µv +u1(t)c)

)
λ4 +

βvbIhλ5

Kh +m

]
dλ5

dt
=−

[
−βhbShλ1

Kh +m
+

βhbShλ2

Kh +m
− (µv +u1(t)c)λ5

]
,

(3.106)

with the transversality condition,

λ1(T ) = λ3(T ) = λ4(T ) = 0, and λ2(T ) = λ5(T ) = 1,

3. Optimality conditions,

∂H
∂u1

= B1u1 +(λ3−λ1)Sh− (λ4Sv +λ5Iv)c = 0

∂H
∂u2

= B2u2 +(λ3−λ2)Ih = 0.
(3.107)

where H is the Hamiltonian of the system given by

H (Sh, Ih,Rh,Sv, Iv,u1,u2,λ1,λ2,λ3, t) =
1
2
(
B1u2

1 +B2u2
2
)

+λ1

[
Λh−

βhbIvSh

Kh +m
−µhSh

]
−λ1 [u1(t)Sh +ωRh]

+λ2

[
βhbIvSh

Kh +m
−µhIh−u2(t)Ih−δIh

]
+λ3 [u2(t)Ih−µhRh−ωRh +u1(t)Sh]

+λ4

[
Λv−

βvbIhSv

Kh +m
− (µv +u1(t)c)Sv

]
+λ5

[
βvbIhSv

Kh +m
− (µv +u1(t)c)Iv

]
.
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Solving Equations (3.107) and for u1 and u2 gives respectively, the optimal

controls

u∗1 =
(λ1−λ3)S∗h +(λ4S∗v +λ5I∗v )c

B1

u∗2 =
(λ2−λ3)I∗h

B2
.

(3.108)

Since the controls are bounded, that is, 0 ≤ u1 ≤ u1max, 0 ≤ u2 ≤ u2max, the

optimal controls in (3.108) are replaced by

u∗1 = min
{

max
{

0,
(λ1−λ3)S∗h +(λ4S∗v +λ5I∗v )c

B1

}
,u1max

}
u∗2 = min

{
max

{
0,
(λ2−λ3)I∗h

B2

}
,u2max

}
.

(3.109)

Numerical Solution of the Optimality System

The optimality system consists of the two-point boundary-value problem

given in (3.105) and (3.106), and the optimality condition given in (3.107).

The constants B1, and B2 in the objective functional play a dual role. First,

they are needed to balance the units in the cost functional; the controls u1 and

u2 have values between 0 and 1, while the Ih and Iv have values in millions.

Secondly, the values of B1 and B2 are chosen to indicate relative importance of

prevention or treatment in the minimization of the infected populations.

We used the forward-backward sweep method, developed by (Lenhart S.

and Workman J.T., 2007), based on the Runge-Kutta method of order 4, to solve

the two-point boundary-value system.

The following procedure outlined, was implemented in OCTAVE, a MAT-

LAB-like Public Domain Software.

1. Choose an initial guess for u∗1 and u∗2.

2. Solve the state equations (3.105), with the given initial conditions forward

in time,
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3. Solve the costate equations (3.106), with the given transversality condi-

tions backward in time,

4. Update the expression for u∗1 and u∗2 in (3.109) with the new values of the

state and the cost ate variables

5. Repeat steps (2) - (4) until convergence criteria is met.

Chapter Summary

In this chapter we have developed mathematically a deterministic SIRS-SI

vector-host model for the control and transmission of malaria, using prevention

and treatment as the controls. We showed that the model has a unique (DFE)

and EE points. The next generation matrix approach was used to derive the ba-

sic reproduction number, R0, a threshold quantity that determines whether an

infectious disease dies out or becomes endemic in a community. We showed

that the DFE point is asymptotically stable globally and locally if R0 < 1; and

the EE point is globally and locally asymptotically stable if R0 > 1. We used

the least square method, implemented in Python, to derive the model param-

eters. Numerical simulations of the model were performed to determine the

effects of prevention and treatment on the incidence and prevalence of the dis-

ease. We then, formulated an Optimal Control Problem, with prevention and

treatment as controls. The existence of the optimal controls u∗1,u
∗
2 was estab-

lished. Pontryagin’s Maximum Principle was applied to obtain the necessary

conditions for optimality, and also characterize the optimal controls u∗1 and u∗2.

The forward-backward sweep method, implemented in OCTAVE, was used to

solve numerically, the optimality system.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter discuss results of simulations obtained from using the opti-

mal control functions u∗1(t) and u∗2(t). We recall that each of the control func-

tions depends on its respective maximum, 0 ≤ u1max ≤ 1, and 0 ≤ u2max ≤ 1.

We will discuss the results obtained from using various combinations of u1max

and u2max, with given values of the parameter c.

Simulations on the Effect of c on Infected Populations

We now investigate the effects of c, on infected vector and infected host

population, with fixed values of maximum available controls: (i) u1max = u2max =

0.2; (ii) u1max = u2max = 0.4 : and (iii) u1max = u2max = 0.5.

The effect of the parameter c, on vector populations are displayed in Fig-

ures 12, 13 and 14.
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Figure 12: Infected vector populations with u1max = u2max = 0.2.

From Figure 12, increasing the constant ci, from 0.0 to 0.2 reduces the

infected vector population from about 50×106 to about 30×106, when u1max =

u2max = 0.2.
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Figure 13: Infected vector populations with u1max = u2max = 0.4.

From Figure 13 the infected vector population reduces from about 26×

106 to about 10×106, when u1max = u2max = 0.4 .
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Figure 14: Infected vector populations with u1max = u2max = 0.5.

Also, from Figure 14 the infected vector population reduces from about

23×106 to about 8×106, when u1max = u2max = 0.5 .

The effect of varying the parameter c, on human populations are displayed

in Figures 15, 16 and 17.
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Figure 15: Infected human populations with u1max = u2max = 0.2.

Figure 15 shows that increasing the constant c from 0.0 to 0.2, reduces

the infected human population from i about 8× 106, to about 7.4× 106, when

u1max = u2max = 0.2.
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Figure 16: Infected human populations with u1max = u2max = 0.4.

Figure 16 shows that increasing the constant c from 0.0 to 0.2, reduces the

infected human population from about 3.8× 106, to 3.5× 106, when u1max =

u2max = 0.4.
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Figure 17: Infected human populations with u1max = u2max = 0.5.

Figure 17 shows that the infected human population reduces from about

u1max = u2max = 0.5.

Simulations Using Various Combinations of u1max,u2max, with c = 0

The simulations consisted of using various combinations of the maximum

available controls to investigate their effect on the infected human and vector

populations. For example, the effect on the infected human populations, of

choosing

u1max = {0.2, 0.4, 0.6, 0.8}, u2max = {0.2, 0.4, 0.6, 0.8},

are shown in Figures 18, and 19.
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Figure 18: Infected human populations with c = 0.

Figure 18 shows that the infected human population reduces considerably,

with increasing values of controls u1max and u2max.
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Figure 19: Infected vector populations with c = 0.

Once again, we see from Figure19 that the infected vector population re-

duces as the control maxima are increased.

Simulations with u1max = 0.5, u2max = 0.2

We now consider more realistic values for u1max and u2max. Choosing

u1max = 0.5, means that u1Sh represents a maximum of 50% of the susceptible

population. Choosing u2max = 0.2, corresponds a treatment period of about

1/0.2 = 5 days.

The resulting host and vector populations are shown in Figures 20 and 21

respectively.

75

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Figure 20: Human populations with u1max = 0.5, u2max = 0.2

From Figure 20, we see a considerable reduction in the infected Human

population, with the above choices.
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Figure 21: Vector populations with u1max = 0.5, u2max = 0.2.

Figure 21 shows a reduction in the infected vector population; however,

the reduction is not as dramatic as in the human population.

The optimal control functions are displayed in Figures 22 and 23.
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Figure 22: Optimal control function u1(t), with u1max = 0.2

Figure 22 shows that the control function u∗1(t) start from the maximum

u2max = 0.5 and gradually decreases, as the susceptible population decreases.
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Figure 23: Optimal control functions u2(t), with u2max = 0.2.

Similarly, Figure 23 shows that the control function u∗2(t) start from the

maximum u2max = 0.2 and gradually decreases, as the infected population de-

creases.

Simulations with Differential Treatment Regimes

Figure 24 displays the effect on the total infected human populations,

when treatment is not readily available to everyone infected. This scenario hap-

pens for a variety of reasons including, lack of medical attention for for the

infected individuals, as well as affordability for the cost of treatment. In Fig-

ure 24, the labels ”p25Ih”, ”p50Ih” and ”Ih” represents respectively, the total

infected population, when 25%, 50% and the whole infected population receive

treatment.
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Figure 24: Infected human populations with differential treatment regimes.

Figure 24 shows that the total infected human populations decrease over

time, when treatment is accessible to greater proportion of those infected.

Chapter Summary

This chapter presented results from simulation using combinations of dif-

ferent values of u1max and u2max. Figures 12, 13 and 14 show that increasing

the parameter c, with fixed maximum values both u1max and u2max drastically

reduces the infected vector populations. From Figures 15, 16 and 17, we notice

that increasing c, with fixed maximum values both u1max and u2max also reduces

the infected human populations, but not as much as the vector populations. Fig-

ures 18 and 19 show that increasing u1max and u2max with a fixed value of c

reduces both infected populations. In particular, choosing u1max = 0.5, means

that u1Sh represents a maximum of 50% of the susceptible population. Similarly,
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choosing u2max = 0.2, corresponds a treatment period of 1/0.2 = 5 days; so that

u2Ih represents treatment for all infected humans, (assuming an infectivity pe-

riod of about 5 days). The plots in Figures 20 and 21; show a considerable reduc-

tion in both human and vector populations respectively. The control functions,

prevention and treatment are shown in Figures 22 and 23 respectively. From the

plots, we notice that each control function starts with the maximum available,

and gradually reduces as the susceptible and infected population declines, re-

spectively Figure 24 shows the effect of increasing accessibility of treatment for

patients, to the overall reduction in infected human population.

Our simulations clearly show that,

1. increasing the parameter c reduces the vector population.

2. increasing u1max reduces the susceptible human population,

3. ensuring the accessibility of treatment for diagnosed cases, reduces the

overall infected human population,

We must remember that, every untreated case becomes a reservoir for

mosquitoes to further transmit the disease.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

In this chapter, we present the summary, conclusion and recommenda-

tions, based on the findings of the thesis. Some recommendations based on the

research is also presented.

Summary

In this thesis, we have developed mathematically a deterministic SIRS-SI

vector-host model for the transference and control of malaria, using prevention

and treatment as the controls. A unique and special feature of our model is

that, it assumes that a proportion cα,(0 ≤ c ≤ 1) of the prevention efforts α,

is directed to reduce the vector population. We established that the model has

a unique disease-free (DFE) and endemic equilibrium points. The next gener-

ation matrix approach was used to derive the basic reproduction number, R0,

a threshold quantity that determines whether an infectious disease dies out or

becomes endemic in a community. We showed that the DFE point is asymptot-

ically stable globally and locally if R0 < 1; and the EE point is asymptotically

stable globally and locally if R0 > 1.

We used the method of least-squares, implemented in Python, to estimate

the model parameters, using data on confirmed cases from 2004 to 2017, ob-

tained from the W.H.O. Several simulations of the model, using various com-

bination of prevention α, treatment γ, with increasing values of the parameter

c, were performed to determine their effect on the incidence and prevalence of

malaria in Ghana From the simulations we observed that, with prevention effort
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at α = 0.5, combined with treatment rate of γ = 0.2, and a value of the constant

c = 0.2, reduced the vector population considerably. The smaller the infected

vector populations, the less likelihood of a human becoming infected.

Obviously, increasing the values of α and γ will result in a more dramatic

reduction in the vector populations, as well as infected human populations.

To determine an optimal combination of treatment and prevention, we

formulated an optimal control problem, with an appropriate cost functional.

Pontryagin’s Maximum Principle was used to characterize the optimal con-

trols functions, u∗1(t) and u∗2(t), and obtain the optimality system. We used the

forward-backward sweep method, based on the Runge-Kutta method of order 4,

to solve the optimality system.

Plots of solutions of the model, using different combinations of achiev-

able rates for u1max, u2max with values of the parameter c, were examined to

determine the evolution of the disease in Ghana. In particular, we chose a fixed

value of u1max = 0.5, so that u1Sh represents about 50% prevention for the sus-

ceptible population. In addition, we chose u2max = 0.2, corresponding to an

infectivity period of 1/0.2 = 5 days; this is the average recovery period of in-

fectivity, when there are no complications. We then examined the effect on the

total infected human populations, over time, when treatment is available only

to different proportion of the infected population. This scenario happens for a

variety of reasons including, lack of medical facilities in some communities, as

well as affordability for the cost of treatment.

Conclusions

The main objective for this research is the use of mathematical methods

to investigate malaria transmission and the minimum cost effective approach to

eradicate malaria. The key to successfully containing the spread of any infec-
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tious disease, lies in prevention as well as effective treatment for those infected

with the disease. The fewer the infected population, the smaller the transmis-

sion rate. Our simulations show that making treatment accessible to everyone

infected, considerably reduces the overall transmission rate. Our simulations

also show that if at least, 50% of the susceptible population follow proper pre-

vention protocols, the reduction in transmission will be remarkable. In fact,

proper prevention effort plays the role of a vaccine.

Recommendations

Our recommendations are based on the results of our simulation, together

with the maxim that the key to effectively controlling any infectious disease lies

in rapid reduction in the susceptible population, through appropriate prevention

efforts, plus a reduction in the infected population through effective treatment.

Prevention methods that reduces vector populations include

1. Indoor spraying with residual insecticides. This is when the inside of

house structures is prayed once or twice a year with insecticide spray.

This activity should be regularly done since it reduces the proportion of

the resident mosquitoes whether susceptible or infectious.

2. The use of insecticide treated mosquito nets (ITN). This reduces the con-

tact rates.

3. Larval control. This activity may be implemented through environmental

modification such as draining and killing or the use of larvacides.

Treatment strategies must include

1. The use of WHO-approved Anti-malarial medications including Coartem

80/480, Hydroxyl-Chloroquine and Fansidar (Sulfadoxine and Pyrimethamine).

2. Early diagnosis and effective treatment. Each untreated case becomes a
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reservoir for mosquitoes to further transmit to other susceptibles.

In order to eradicate malaria, especially in the developing countries, where

most people cannot afford the cost of treatment,

1. the medication must be free, or at least, highly subsidized in order to

ensure a rapid reduction in the infected population.

2. the prevention methods listed above, must be enforced on all contiguous

neighbourhoods.
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