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ABSTRACT

The problem of dealing with claims on asset which is not traded has at-

tracted a lot of interests recently. Naturally the approach consist of choosing

a related traded asset or index to use for hedging purposes. In this thesis,

we consider a model for which the non-traded asset is driven by a Ornstein-

Uhlenbeck process. We introduce it into a consumption-investment problem

with factor model under recursive utility of Epstein-Zin type. Due to the sec-

ond Brownian motion, we are working in an incomplete market in which the

objective of an agent is pricing and hedging this random payoff. Making use

of the maximum principle method, we solve our forward-backward system and

find the optimal consumption and investment strategies and a relation given

the indifference price. Since a closed form formula for the indifference price

is not obtained, a finite difference method is applied to estimate its value.

For numerical purpose, we consider a one period model. We perform some

numerical analysis on the optimal investment in presence of a claim and on

the indifference price. In general, we observe that, for the parameters spec-

ification considered, the optimal investment becomes an increasing function

with regard to initial wealth of the agent so as to be higher than its value in

the no claim case. However, it is rather a decreasing function with respect

to the correlation between non-traded and traded assets and is always net off

the investment with zero claim. Regarding the indifference price, we observe

that it increases when the traded asset becomes more and more correlated to

the non-traded one. Then, analysing also the dependency of the indifference

price to the risk aversion, we obtain that an agent is willing to pay less for

the non-traded asset when he/she becomes less tolerant of risk. Finally, we

notice from the indifference price versus the initial wealth that an agent is less

willing to take on more risk.
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CHAPTER ONE

INTRODUCTION

Valuation of claims on assets that cannot be traded appears to be of

great interest nowadays in option pricing theory. An investor expects to re-

ceive or pay out an unhedgeable claim on an asset, and must decide how

to best manage this risk. The problem is to know how much should be the

adjustment on the initial wealth of the investor in order to be indifferent be-

fore and after buying or selling the claim. This problem commonly known

as utility indifference pricing can be seen as two stochastic optimal control

problems. The first optimal investment problem considers that the agent has

not taken any position on the claim whereas the second optimal investment

problem assumes a buying or selling of the claim by the agent. A usual ap-

proach is to hedge the claim with the help of a traded asset correlated to the

non-traded one. There is often a risk associated with the non-traded asset and

that cannot be hedge perfectly, making the market incomplete. To the best of

our knowledge, most of the work done are making use of the so called ”time

separable utilities” especially exponential utility, power utility or logarithmic

utility. In this thesis, we use the standard recursive utility of Epstein-Zin

type to capture the fact that the utility of an agent at any time depends on

his/her utility at all the previous time. To solve these problems the maximum

principle method (Boltyanskii et al., 1960) is used.

Background to the Study

Think of:

(i) a representive of a corporation, who wishes to determine the correct

price for a real option (a capital investment),

(ii) a gas-fired power-plant owner who wants to reduce the risk attached to

the rising gas prices and declining power prices,

(iii) a representative of an insurance (reinsurance) company, who needs to

1
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determine the price of an insurance contract.

In each case, we want to determine the optimal price of a financial contract

market consistently, by exploiting correlations between the pay off of our

investment and the global stock market.

Statement of the Problem

A first approach to resolve utility indifference pricing problems has been

to consider the exponential utility. But, the critical drawback of this approach

is that the indifference price found does not depend on the initial wealth

which makes it unrealistic (Malamud et al., 2013). Due to that limitation,

several researches have been conducted now looking at the cases where the

utility is either power or logarithmic. However, we observed that they were

almost all focusing on time separable utilities even though it was shown that

these types of utility generate a vast literature on asset pricing anomalies

such as equity premium puzzle, excess volatility puzzle, credit spread puzzle

and risk-free rate puzzle (Xing, 2017). Furthermore, as mentioned above, an

utility indifference pricing problem is seen as a combination of two investment

problems, herein we consider a model in which the dynamics of the traded

asset depend on a correlated stochastic factor; such models appear to be an

open problem in stochastic optimal investment models (Zariphopoulou, 2009).

In this thesis, we seek to enrich the literature on option pricing by putting

all together recursive utility, stochastic factor model and maximum principle.

To our knowledge this is the first time indifference pricing under Epstein-Zin

utility is solved for factor model and the method we use is the well known

maximum principle method.

Research Objectives

The objectives of this thesis are as follow:

(i) to find the investment and consumption strategies of an agent with

preferences described by a recursive utility of Epstein-Zin type,

2
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(ii) to find the utility indifference price on a derivative written on the asset,

(iii) to numerically find the indifference price that an agent is willing to pay

to hedge the claim.

Significance of the Study

Due to the fact that recursive utilities are more realistic to model pref-

erences of an agent and also to the fact that indifference pricing has recently

been applied to many incomplete market setting, the results of this thesis can

be used:

(i) to help policymakers and investors (from various areas such as banks,

hedge funds, insurance and reinsurance companies) to make better de-

cisions,

(ii) by mathematicians to better understand the option pricing theory as it

appears in various areas as portfolio optimisation, weather derivatives

(temperature options, rainfall options) and energy contracts (commod-

ity derivatives).

Delimitation

In this thesis, we make three general assumptions:

(i) the consumption stream is positive at each time,

(ii) we consider only self-financing portfolio-consumption pairs; that is, pur-

chasing a new portfolio, as well as all consumption, must be financed

uniquely by selling assets already in the portfolio,

(iii) the parameters specification of the recursive utility of Epstein-Zin type

are both less than 1,

(iv) the factor model is observable,

(v) the price processes are all continuous.

3
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Limitation

Due to the fact that it is only in very few cases that we can find an exact

expression of the utility indifference price, we give here an approximation of

its value using finite difference method making our results more difficult to

interpret.

Definitions of Terms

We now introduce some notions and concepts that will be used in this

thesis. For more details, the reader may consult the books by Øksendal (2003),

Björk (2009) and Cohen & Elliott (2015).

Definition 1 (σ-algebra)

Let Ω be some set, and let 2Ω represent its power set. Then a subset

F ⊆ 2Ω is called a σ-algebra if it satisfies the following three properties:

(i) Ω ∈ F ,

(ii) F is closed under complementation: If A is in F , then so is its comple-

ment, Ω \ A ≡ Ac,

(iii) F is closed under countable unions: If A1, A2, A3,... are in F , then so

is A = A1 ∪ A2 ∪ A3 ∪ ... :=
∞�
i=1

Ai.

The pair (Ω,F) is called a measurable space. Adding to it a probability

measure P, the triple (Ω,F ,P) is a probability space.

Definition 2 (Random variable)

Given (Ω,F ,P) a probability space. A function X : Ω → Rn is said to

be a random variable if it is F -measurable. That is, if

X−1(U) := {ω ∈ Ω;X(ω) ∈ U} ∈ F .

Definition 3 (Stochastic process)

A stochastic process is defined as a collection of random variables defined

4
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on a common probability space (Ω,F ,P), where the random variables indexed

by some set T take values in the same mathematical space S, which must be

measurable with respect to some σ-algebra Σ.

In other words, for a given probability space (Ω,F ,P) and a measurable space

(S,Σ), a stochastic process is a collection of S-valued random variables, which

can be written as: {Xt : t ∈ T }.

In mathematical finance, a stochastic process is used, for instance, to model

the price of a stock measured on daily basis.

Definition 4 (Brownian motion)

A stochastic process Bt is called a Brownian motion if the following

conditions hold.

(i) B0 = 0,

(ii) The process Bt has independent increments, that is if r < s ≤ t < u

then Bu − Bt and Bs − Br are independent stochastic variables,

(iii) For s < t, the stochastic variable Bt −Bs has the Gaussian distribution

N (0,
√
t− s), where

√
t− s stands for the standard deviation,

(iv) Bt has continuous trajectories.

The Brownian motion appears to be the simplest stochastic process and used

to describe the motion of a pollen grain in water.

Definition 5 (Filtration)

A filtration {Ft}t≥0 on a probability space (Ω,F ,P) is a collection of

sub-σ-algebras of F satisfying Fs ⊆ Ft whenever s ≤ t.

The idea is that Ft represents the set of events observable (or information

known) at time t. The probability space taken together with the filtration

(Ω,F , {Ft}t≥0,P) is called a filtered probability space.

Definition 6 (Adapted process)

A stochastic process Xt is said to be adapted to the filtration {Ft}t∈T

5

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



if Xt is Ft-measurable for each t ∈ T .

For instance if Xt represents the stock price at time t, saying that Xt is

adapted to the filtration {Ft}t∈T means we know all the values of the stock

price up to time t.

Definition 7 (Stochastic differential equation)

A stochastic differential equation (SDE) is a differential equation in

which one or more of the terms is a stochastic process. The general form

of a k-dimensional SDE is

dXt = f(t, Xt)dt+ g(t, Xt)dBt, X0 = x,

where f : [0, T ]×Rk → Rk, g : [0, T ]×Rk → Rk×n are known and represent the

drift and diffusion coefficient and Bt is an n-dimensional Brownian motion.

Definition 8 (Backward stochastic differential equation)

A Backward stochastic differential equation (BSDE) is a new class of

stochastic differential equations, whose value is prescribed at the terminal

time T . The general form of a k-dimensional BSDE is





dYt = −f(t, Yt, Zt)dt+ ZtdBt

YT = ξ,

(1.1)

where f : [0, T ] × Rk × Rk×n → Rk is called generator, {Yt, t ∈ [0, T ]}

is a continuous Rk-valued adapted process, Bt is an n-dimensional Brownian

motion , {Zt, t ∈ [0, T ]} is an Rk×n-valued predictable process and ξ ∈ L2(Rk).

Definition 9 (Solution of a BSDE)

A solution to the backward stochastic differential equation (1.1) is a pair

(Y, Z) ∈ S2(0, T )×H2(0, T )d satisfying

Yt = ξ +

� T

t

f(s, Ys, Zs)ds−
� T

t

Zsd̊Ws, 0 ≤ t ≤ T,

6
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where S2(0, T ) is the set of real-valued progressively measurable processes Y

such that

E[ sup
0≤t≤T

|Yt|2] < ∞,

and H2(0, T ) denotes the set of Rd-valued progressively measurable processes

Z such that

E
� � T

0

|Zt|2dt
�
< ∞.

Theorem 1 (Uniqueness result). Given a pair (ξ, f) satisfying conditions

(i) and (ii), there exists a unique solution (Y, Z) to the backward stochastic

differential equation (1.1).

Where the conditions are given by

(i) ξ ∈ L2(Ω,FT ,P,R),

(ii) f : Ω× [0, T ]× R× Rd → R such that

• f(., t, y, z) written for simplicity f(t, y, z) is progressively measur-

able for all y, z,

• f(t, 0, 0) ∈ H2(0, T ),

• f satisfies a uniform Lipschitz condition in (y, z), that is, there

exists a constant Cf such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ Cf (|y1 − y2|+ |z1 − z2|),

for all y1, y2, z1, z2, dt⊗ dP almost everywhere.

Definition 10 (Conditional expectation)

Given a probability space (Ω,F ,P) and a random variable X, the con-

ditional expectation of X given H ⊂ F a σ-algebra, denoted by E[X|H], is

the unique function from Ω to Rn satisfying:

7
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(i) E[X|F ] is F -measurable,

(ii)
�
H
E[X|F ]d̊P =

�
H
Xd̊P, for all H ∈ H.

We have the following properties

(i) If Yt and Zt are stochastic variables and Zt is Ft-measurable, then

E[Zt · Yt|Ft] = Zt · E[Yt|Ft].

(ii) If Yt is a stochastic variable and s < t, then

E[E[Y |Ft]|Fs] = E[Y |Fs].

Definition 11 (Martingale)

Working with a filtered space (Ω,F , {Ft}t≥0,P), a stochastic process Xt

is called a (Ft,P)-martingale if the following conditions hold

(i) Xt is adapted to the filtration {Ft}t≥0.

(ii) For all t, E[|Xt|] < ∞.

(iii) For all s and t with s ≤ t the following relation holds

Xs = E[Xt|Fs].

For all s and t with s ≤ t, a process Xt satisfying (i), (ii) and the following

inequality

Xs ≤ E[Xt|Fs]

is called a submartingale, and a process satisfying (i), (ii) and the following

inequality

Xs ≥ E[Xt|Fs]

is called a supermartingale.

8
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Theorem 2 (Martingale representation theorem). Let {Bt, 0 ≤ t ≤ T} be a

Brownian motion on (Ω,F ,P). Let {Ft}t∈[0,T ] be the filtration generated by

this Brownian motion.

Let {Xt, 0 ≤ t ≤ T} be a martingale (under P) relative to this filtration. Then

there is an adapted process {Zt, 0 ≤ t ≤ T}, such that

Xt = X0 +

� t

0

ZudBu, 0 ≤ t ≤ T.

Theorem 3 (Girsanov’s theorem). Suppose that the filtration {Ft}t∈[0,∞) is

the usual augmentation of the natural filtration generated by a Brownian mo-

tion {Bt}t∈[0,∞).

(i) Let Q equivalent to P be a probability measure on F and let {Zt}t∈[0,∞)

be the corresponding density process, that is, Zt = E
�
dQ
dP |Ft

�
. Then,

there exists a predictable process {θt}t∈[0,∞) such that Z = ε(
� ·
0
θudBu)

and

Bt −
� t

0

θudu is a Q-Brownian motion.

(ii) Conversely, let the process {θt}t∈[0,∞) have the property that the process

Z = ε(
� ·
0
θudBu) is a uniformly-integrable martingale with Z∞ > 0 a.s.

For any probability Q ∼ P such that E
�
dQ
dP |F∞

�
= Z∞,

Bt −
� t

0

θudu, t ≥ 0,

is a Q-Brownian motion.

Theorem 4 (Itô’s formula). Assume that the dynamics of the process Xt is

given by the following stochastic differential equation

dXt = µ(t, Xt)dt+ σ(t, Xt)dBt,

9
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where µt and σt are adapted processes, and let f be a C1,2-function. Define

the process Zt by Zt = f(t, Xt). Then Zt has a stochastic differential given by

df(t, Xt) =
∂f

∂t
(t, Xt)dt+

∂f

∂x
(t, Xt)dXt +

1

2

∂2f

∂x2
(t, Xt)(dXt)

2,

where we use the following relations





(dt)2 = 0,

dt · dBt = 0,

(dBt)
2 = dt.

Definition 12 (Feynman-Kǎc formula)

Let f ∈ C2
0(Rn) and q ∈ C(Rn). Assume that q is lower bounded.

(i) Put

v(t, x) = Ex
�
exp

�
−

� t

0

q(XS)ds
�
f(Xt)

�
. (1.2)

Then

∂v

∂t
= Av − qv; t > 0, x ∈ Rn (1.3)

v(0, x) = f(x); x ∈ Rn (1.4)

(ii) Moreover, if w(t, x) ∈ C1,2(R × Rn) is bounded on K × Rn for each

compact K ⊂ R and w solves Equations (1.3), (1.4), then w(t, x) =

v(t, x), given by Equation (1.2).

Definition 13 (Lebesgue integrable space)

We have the following properties

(i) We say that the process Xt belongs to L2[a, b] if the following conditions

are satisfied

•
� b

a
E[X2

s ]ds < ∞.

10
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• The process Xt is adapted to the Ft-filtration.

(ii) We say that the process Xt belongs to L2 if X ∈ L2[0, t] for all t > 0.

Definition 14 (Lebesgue’s dominated convergence theorem)

Let {fn} be a sequence of real-valued measurable functions on a mea-

surable space (S,Σ, µ). Suppose that the sequence converges pointwise to a

function f and it is dominated by some integrable function g in the sense that

|fn(x)| ≤ g(x)

for all numbers n in the index set of the sequence and all points x ∈ S.

Then f is integrable and

lim
n→∞

�

S

|fn − f |dµ = 0

which also implies

lim
n→∞

�

S

fndµ =

�

S

fdµ.

By g integrable we mean in the sense of Lebesgue, that is

�

S

|g|dµ < ∞.

Definition 15 (Differentiability)

Let U be an open subset of a Banach space χ and let G : U → R.

(i) Saying that G has a ”directional derivative” at x ∈ U in the direction

y ∈ χ means

DyG(x) := lim
�→0

1

�
(G(x+ �y)−G(x)) exists.

(ii) Saying that G is ”Frechet differentiable” at x ∈ U means that there

11

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



exists a linear map

L : χ → R

so that we have

lim
δ∈χ
δ→0

1

||δ|| |G(x+ δ)−G(x)− L(δ)| = 0.

Then L is called the ”Fréchet derivative” of G at x.

The notation for the ”Fréchet derivative” of G at x is

L := ∇xG.

(iii) All Fréchet differentiable map G has a directional derivative in all di-

rections y ∈ χ and

DyG(x) = ∇xG(y).

Definition 16 (Space of square integrable process)

Given a filtered probability space (Ω,F , {Ft}t≥0,P).

(i) We say that the process Xt belongs to the class L2[a, b] if the following

conditions are satisfied:

•
� T

0
E[X2

s ]ds

• The process Xt is adapted to the (Ft,P)-filtration

(ii) We say that the process Xt belongs to the class L2 if Xt belongs to

L2[0, t] for all t > 0.

Definition 17 (Financial market)

A financial market describe a marketplace where buyers and sellers par-

ticipate in the trade of financial instruments or assets such currencies, bonds,

12
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derivatives, etc.

A market in which all the claims are replicable is said to be complete otherwise

it is incomplete.

Definition 18 (Option market)

In finance, an option is a contract which gives the owner of the option the

right, but not the obligation, to buy or sell an underlying asset or instrument

at a specified strike price on a specified date, depending on the form of the

option.

Definition 19 (Strategy)

Let the N -dimensional price process {St; t ≥ 0} be given.

(i) A portfolio strategy is any FS
t -adapted N -dimensional process {ht; t ≥

0}.

(ii) A consumption process is any FS
t -adapted one dimensional process {ct; t ≥

0}.

A self-financing portfolio–consumption pair is a portfolio for which, apart of

course from the consumption, there is no exogenous infusion or withdrawal of

money.

Organisation of the Study

This thesis is structured as follows. This chapter presents the back-

ground of the research including its objectives and some basics definitions

and theorems. Chapter Two presents a literature review on utility indiffer-

ence pricing problem along with some key concepts around which the study

is built.

In Chapter Three, we first state and prove a sufficient maximum prin-

ciple for general forward-backward differential equations assuming that the

Hamiltonian is concave. We then apply it to study two investment-consumption

problems with and without claim. In latter case, it is worth mentioning that

13
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the claim is written on a non traded asset and the investor wishes to know

the optimal investment consumption if he/she purchases a number λ of non-

traded asset. Notice that in these cases, one needs to transform the generator

of the recursive utility in order to obtain the concavity assumption.

Chapter Four talks about the indifference bid price for an agent who

buys an option on the non-traded asset. Unlike in the case of classical utility

it is not possible to derive an explicit solution for the indifference price. As

such, we use the finite difference method to approximate its value at each

time. Since it is numerically demanding we use a one period model, that

is, we consider only two periods t = 0 and t = T . We end this chapter by

examining the sensitivity of the price with respect to some of its parameters;

that is, we examine the impact that a small change on the price parameter

has on the price itself. We also, perform the same sensitivity analysis for the

new hedging strategy when purchasing the claim.

In Chapter Five, summary of the thesis, conclusion and recommenda-

tions are given.

Chapter Summary

This chapter introduced the thesis, by first given the motivation for

studying the problem contain in this thesis. We then moved on to state the

related problem, announce our research objectives and the importance of our

results both practically and mathematically. Also, in addition to the definition

of some terms, we gave the delimitation and the limitation of this thesis. We

concluded the chapter by describing the structure of this thesis.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

An incomplete financial market is by definition a market in which it is

not possible to replicate all claims. In this case, the writing of a claim in-

volves a real risk, and its pricing and hedging can only be done with regard

to the agent’s preferences towards such risk. A classical approach used by

economists is to specify the agent’s utility function which represents a math-

ematical concept that measures preferences of an agent over a set of goods

and services. A first use of this approach in incomplete market was made by

Hodges & Neuberger (1989) and Davis (1997). Hodges & Neuberger (1989)

made use of it in the context of option pricing under transaction costs in the

Black-Scholes model. In this methodology, the agent seeks to find the amount

of money that his/her initial wealth should vary in order to get the same

maximal expected utility before and after buying or selling claims. Other

applications of utility-based hedging have been to stochastic volatility mod-

els (Sircar & Zariphopoulou, 2004) and to the pricing of volatility derivatives

(Grasselli & Hurd, 2007). The general theory of utility-based pricing, with a

particular emphasis on relations with the dual to the primal utility maximisa-

tion problem, has been studied by Delbaen et al. (2002), by Becherer (2004),

and by Hugonnier et al. (2005).

Real options is another area where claims on non-traded assets appear

frequently, as can be seen in Dunbar (2000) and the book by Dixit et al.

(1994). As examples of real options problems we have extraction rights to

an oil reserve or the option to start up a research and development (R&D)

venture.

He & Pages (1993) introduced the study of problems assuming that

the volatility is stochastic. Since then in the literature, Cuoco (1997) and

El Karoui & Jeanblanc-Picqué (1998) assume both incomes covered by as-
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sets but with liquidity constraint. Duffie & Zariphopoulou (1993), Duffie et

al. (1997) and Koo (1998) worked on infinite horizon optimal consumption-

investment with stochastic income and risky asset imperfectly correlated. Us-

ing a Markov chain approximation Munk (2000) gave numerical solutions.

Some simple examples were considered by Duffie & Jackson (1990) and Svens-

son & Werner (1993) and explicit solutions under quadratic utility were found

by Duffie & Richardson (1991).

Under constant relative risk aversion (CRRA), a related general problem

was studied by Malamud et al. (2013) and Zariphopoulou (2001). In the

latter, she obtained a non-linear partial differential equation and performed

a transformation to reduce it to a linear one. She introduced unhedgeable

risks by considering a dependency between the coefficients of the diffusion

price process for a traded asset and a ”stochastic factor” correlated with the

asset price. Henderson (2002) and Henderson & Hobson (2002) differ from

Zariphopoulou (2001) by directly pricing a claim on a non-traded asset by

including it in the utility from wealth. Socgnia & Pamen (2018) studied a

pricing and hedging problem of a commodity derivative at a given location

for a not observable convenience yield. They considered an optimal control

for a three-factor stochastic factor model assuming that one of the factors is

not observed. With the use of the classical filtering technique (Bensoussan,

2004) they transformed the partial observation control problem for stochastic

differential equation (SDE) to a full observation control problem for stochastic

partial differential equation (SPDE). In this chapter, we discuss some of the

studies related to this thesis. We explore some key concepts around which the

study is built. We end up by a summary of the main points that have emerged

from this literature review and their implications for the development of this

thesis.

Stochastic Optimal Control

Stochastic optimal control problems regularly emerge in a variety of set-

tings such as economics, ecology, engineering, finance, etc.(see Yong & Zhou
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(1999) and Pham (2009)), where a criterion (defined as a functional) that mea-

sures the performance of the decisions is optimised (maximise or minimise)

by choosing the inputs to a stochastic differential equation. In finance, a

common problem concerns a utility maximization in consumption-investment

models over a fixed time-horizon when the current utility depends also on

the wealth process. These utilities, describing preferences depend in general

on two parameters, risk aversion and elasticity of intertemporal substitution

(EIS). Whereas EIS regulates an agent’s willingness to substitute consumption

over time, risk aversion measures an agent’s attitude toward risk. Neverthe-

less, frequently used time-separable utilities assume EIS and risk aversion to

be reciprocal, generating a vast literature on asset pricing anomalies such as

equity premium puzzle, excess volatility puzzle, credit spread puzzle and risk-

free rate puzzle. To tackle the latter anomalies, untying EIS and risk aversion

is necessary and this can be done by using recursive utility of Epstein-Zin

type and their continuous-time analogues.

By consumption-investment problem we mean a market in which an

agent with a positive initial wealth can invest in risk-free and risky assets

and at the same time decides to consume a part of the new wealth generated.

The objective of an agent facing that problem is to maximize his/her overall

utility or preference, during the time-horizon, from consumption and termi-

nal wealth. In that case, optimal strategies take the corresponding values of

strategies for overall maximum utility. Backward stochastic differential equa-

tions are used here since the agent’s wealth varies stochastically with time and

we assume that his/her objective is to reach to a certain terminal wealth.

Epstein-Zin Utility

The consumption-based capital asset pricing model (CCAPM) intro-

duced by Lucas & Robert (1978) and Breeden (1979) considered as the conven-

tional asset pricing model in financial economics, assumes that the preferences

of an agent have a time-separable von Neumann-Morgenstern representation.
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However, the model has been criticised for two reasons. First, it does not

perform well empirically (Duffie & Epstein, 1992). Second, this specification

confounds risk aversion and elasticity of intertemporal substitutability while

it would be advantageous to be able to disentangle these two conceptually

different aspects of preference.

The first researches to overcome these two drawbacks of the standard

model were conducted by Duffie & Epstein (1989) and Weil (1990) who in-

troduce recursive utilities in a discrete-time setting. These utility functions

not only permit a degree of separation between risk aversion and substitution,

but also imply relations between asset returns and rates of consumption that

match data more closely. In addition, Duffie & Epstein (1992) move on to

define a continuous-time form of recursive utility.

Factor Model

A stochastic factor model is a model in which the coefficients depend on

a random external economic factor. It can be considered as the simplest and

most direct extension of the celebrated Merton model in which stock dynamics

are taken to be lognormal (see Merton (1969) and Merton (1971)).

Technically the factor model is driven by a Brownian motion correlated

to the one that drives the underlying stock making the market incomplete.

Even though little is known about the maximal expected utility as well as the

form and properties of the optimal policies once the lognormality assumption

is relaxed and correlation between the stock and the factor is introduced,

stochastic factor models is widely used in incomplete markets situation in

financial stochastic optimization (Zariphopoulou, 2009). Examples include

modelling the time-varying predictability of stock returns, the volatility of

stocks as well as the stochastic interest rates.

Classical Maximum Principle

One of the principal approaches in solving optimization problem consider

deriving a set of necessary conditions that any optimal solution should satisfy.
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For example, the use of zero-derivative condition (for the unconstrained case)

or the Kuhn-Tucker condition (for the constrained case) allows us to obtain

necessary conditions for an optimum of a finite-dimensional function. These

necessary conditions become sufficient under some convexity conditions on

the objective or constraint functions. An optimal control problem similar to

an optimisation problem in infinite-dimensional spaces are difficult to solve.

The maximum principle, formulated and derived by Boltyanskii et al. (1960),

is truly a milestone of optimal control theory. It states that any optimal con-

trol along with optimal state trajectory must solve the so-called Hamiltonian

system, which is a backward stochastic differential equation (in the classi-

cal case) or a forward-backward stochastic differential (for forward-backward

systems), plus a maximum condition of a function called Hamiltonian. The

significance of the maximum principle is due to two major facts: firstly, max-

imising the Hamiltonian is much easier than the infinite-dimensional original

control problem and also there is no need to attached a Markovian property

to our system.

Utility Indifference Pricing

Considering an agent going for a derivative or contingent claim offering

payoff h(XT ) at a future time T > 0. For a complete market, pricing and

hedging has a unique solution. In this case we make use of the concept of

replication; a portfolio in risk-free and risky asset recreates the terminal payoff

of the option removing the facto all risk and uncertainty.

However, due to transactions cost, portfolio constraints and non-traded

assets, most situations are incomplete in reality thus complete models are

only approximation of it. In such situations, there is no longer a unique

price neither nor prefect hedging. Nevertheless, an agent can still maximise

his/her expected utility of wealth and may be able to reduce the risk due

to the uncertainty of the payoff through dynamic trading. He/she would be

willing to pay a certain amount today for the right to receive the claim such
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that he/she is no worse off in expected utility terms than he/she would have

been without claim (Henderson (2002), Henderson & Hobson (2004), Carmona

(2008)).

In addition to its economic justification and incorporarion of risk aver-

sion, the utility indifference pricing carries some advantages:

(i) prices are non-linear in the number of units of claims, which contrast to

prices in complete markets,

(ii) it is equivalent to the complete market price if the market is complete

and the claim is replicable,

(iii) it incorporates wealth dependence; the price an agent is willing to pay

could well depend on the current amount of her wealth,

(iv) it gives also an explicit identification of the hedge position; found nat-

urally as part of the optimisation problem.

Chapter Summary

This chapter talked about some studies in relation to this thesis and

explored some key concepts around which the study is built. Recently the

concept of utility indifference pricing attracted lot of interests in option pric-

ing theory. In this theory ones needs to consider, before any development, the

type of the market (complete or incomplete). Thus, while in complete mar-

ket pricing and hedging leads to a unique solution, in the incomplete case the

price is not unique and the perfect hedging is no longer possible. Since the well

known Merton problem, researchers have developed several models including

factor models in order to consider the dependency of the stock on a certain

external economic factor that is sometimes supposed to be observed. Techni-

cally a utility indifference pricing problem is a combination of two stochastic

optimal control problems; the first in a situation of zero claim and the second

assuming that an agent goes for a claim. The optimal consumption-investment

problems that result rely strongly on the choice of the utility function. In
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contrast to the time-separable utility that was first used for such problems,

a recent approach make use of recursive utility of Epstein-Zin type and their

continuous-time analogues to capture the fact that an agent would like to sep-

arate his/her conception of risk aversion and intertemporal substitutability.

Finally, in order to work in a more general framework (relaxing the Marko-

vian property), the use of the maximum principle is becoming more and more

frequent.
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CHAPTER THREE

METHODOLOGY

Introduction

This chapter is divided into two parts. The first part presents a proof of

the sufficient maximum principle for a forward-backward stochastic system.

We restrict our proof in the case of a concave generator of the controlled pro-

cess satisfying the backward stochastic differential equation (BSDE) of the

system. In the second part, we apply the sufficient maximum principle to

study two investment-consumption problems. More precisely, we wish to find

an investment-consumption plan that maximises the recursive expected util-

ity of an investor. We consider a recursive utility of Epstein-Zin type with

parameters specification, risk aversion γ and elasticity of intertemporal sub-

stitution ψ, less than 1. We build for each problem the optimal consumption

and investment strategies allowing us to get the optimal utility. In the first

section, we study the problem assuming that the underlying traded asset St

depends on an external factor Xt that we assume to be observed. Next, we

rather consider this external factor as a non-traded asset and we introduce

a claim on it. The new goal for our agent is to maximise his/her expected

utility during the overall period. We consider that the agent in addition to

funds generated by trading on the traded asset St, benefits of λ units of the

claim h(Xt). Throughout this chapter we consider a filtered probability space

(Ω, (F0≤t≤T ),F ,P), where (F0≤t≤T ) is the augmented filtration generated by

a two dimensional Brownian motion (B, B̃) for which each component satis-

fied the usual hypothesis of right-continuity and completeness. For t < T , ct

represents the consumption rate at time t.

Sufficient Stochastic Maximum Principle

Inspired by the work of Øksendal & Sulem (2009) and Pamen (2015), in

this section we present a sufficient maximum principle for stochastic optimal

control of a forward and backward SDE system.
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Consider a state system (Wt, Vt) described by the following coupled sys-

tem of forward-backward SDEs.

Forward system:





dWt = b(t,Wt, ut)dt+ σ(t,Wt, ut)dBt, t ∈ [0, T ]

W0 = ω.

(3.1)

Backward system:





dVt = −g(t,Wt, Vt, Zt, ut)dt+ ZtdBt

VT = cWT , where c ∈ R− {0} is a given constant.

(3.2)

Value function:

J(u) = E
� � T

0

f(t,Wt, Vt, Zt, ut)dt+ h1(V0) + h2(WT )
�
; u ∈ A, (3.3)

where

A is a given family of controls, contained in the set of Ft−predictable controls

ut such that the FBSDE system has a unique strong solution and

E
� � T

0

|f(t,Wt, Vt, Zt, ut)|dt+ |h1(V0)|+ |h2(WT )|
�
< ∞.

We consider the following problem, which is considered as a full observation

optimal control of forward-backward stochastic differential equations,

Problem (Full observation optimal control of FBSDEs). Find the optimal

value function φ ∈ R and the optimal control u∗ in the set of controls A such

that

φ = sup
u∈A

J(u) = J(u∗). (3.4)

Let us now define the Hamiltonian and the adjoint equations of the above
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optimal control problem.

The Hamiltonian is given by

H(t,ω, v, z, u,λ, p, q)

= f(t,ω, v, z, u) + g(t,ω, v, z, u)λ+ b(t,ω, u)p+ σ(t,ω, u)q,

with H Fréchet differentiable (C1) with respect to ω, v, z (see Definition 15).

Thus, the associated pair of adjoint equations are





dλt =
∂H
∂v
(t,Wt, Vt, Zt, ut,λt, pt, qt)dt+

∂H
∂z
(t,Wt, Vt, Zt, ut,λt, pt, qt)dBt

λ0 = h
�
1(V0),

(3.5)

and





dpt = −∂H
∂ω

(t,Wt, Vt, Zt, ut,λt, pt, qt)dt+ qtdBt

pT = cλT + h
�
2(WT ).

(3.6)

We then obtain the following theorem.

Theorem 5 (Sufficient maximum principle). Let Ŵt, V̂t, Ẑt, λ̂t, p̂t, q̂t be

the corresponding solutions of a control û ∈ A of Equations (3.2), (3.5) and

(3.6). Suppose that

(Concavity property) The functions x → hi(x); i = 1, 2 and

(ω, v, z, u) → H(t,ω, v, z, u, λ̂t, p̂t, q̂t) are concave for all t ∈ [0, T ].

(The conditional maximum principle)

max
u∈U

H(t, Ŵt, V̂t, Ẑt, u, λ̂t, p̂t, q̂t) = H(t, Ŵt, V̂t, Ẑt, ût, λ̂t, p̂t, q̂t).

Also, suppose that for all u ∈ A the following integrability conditions are
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satisfied:

E
� � T

0

V 2
t

�∂Ĥ
∂z

�2

t
dt
�
< ∞, E

� � T

0

Z2
t λ̂

2
tdt

�
< ∞,

E
� � T

0

W2
t q̂

2
t dt

�
< ∞, E

� � T

0

σ2
t p̂

2
tdt

�
< ∞.

Then ût is an optimal control for the problem. That means, it satisfies Equa-

tion (3.4),

J(û) = sup
u∈A

J(u).

Proof. Choose u ∈ A with corresponding solutions Wt, Vt, Zt, λt, pt, qt.

Then

Ĥ(t) = H(t, Ŵt, V̂t, Ẑt, ût, λ̂t, p̂t, q̂t)

= f(t, Ŵt, V̂t, Ẑt, ût) + g(t, Ŵt, V̂t, Ẑt, ût)λ̂t + b(t, Ŵt, ût)p̂t

+ σ(t, Ŵt, ût)q̂t,

H(t) = H(t,Wt, Vt, Zt, ut, λ̂t, p̂t, q̂t)

= f(t,Wt, Vt, Zt, ut, λ̂t, p̂t, q̂t) + g(t,Wt, Vt, Zt, ut)λ̂t + b(t,Wt, ut)p̂t

+ σ(t,Wt, ut)q̂t,

also f̂(t) = f(t, Ŵt, V̂t, Ẑt, ût); f(t) = f(t,Wt, Vt, Zt, ut), etc.

Then

J(û)− J(u) = I1 + I2, (3.7)

where

I1 = E
� � T

0

{f̂(t)− f(t)}dt
�

(3.8)
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and

I2 = E[h1(Ŵ0)− h1(W0) + h2(V̂T )− h2(VT )]. (3.9)

The definition of H gives us

I1 = E
� � T

0

{Ĥ(t)−H(t)− (ĝ(t)− g(t))λ̂t − (b̂(t)− b(t))p̂t

− (σ̂(t)− σ(t))q̂t}
�
. (3.10)

From the concavity of h1 we get

h1(Ŵ0)− h1(W0) ≥ (Ŵ0 −W0)h
�
1(Ŵ0) = (Ŵ0 −W0)λ0. (3.11)

Similarly for h2, we have

h2(V̂T )− h2(VT ) ≥ (V̂T − VT )h
�
2(V̂T ). (3.12)

Applying the Ito’s formula on (Ŵt −Wt)λt and using the two backward pro-

cesses Vt and pt we obtain

E[(Ŵ0 −W0)λ0]

= E[(ŴT −WT )λT ]− E
� � T

0

(Ŵt −Wt)dλt +

� T

0

λ̂td(Ŵt −Wt)

+

� T

0

�∂Ĥ
∂z

�
t
(Ẑt − Zt)dt

�

= E[(Ŵt −Wt)(p̂t − h�
2(ŴT ))]− E

� � T

0

�
(V̂t − Vt)

�∂Ĥ
∂v

�
t

− λ̂t(ĝ(t)− g(t)) +
�∂Ĥ
∂z

�
t
(Ẑt − Zt)

�
dt
�

= E
� � T

0

(Ŵt −Wt)dp̂t +

� T

0

p̂td(Ŵt −Wt) +

� T

0

(σ̂t − σt)q̂tdt

−
� T

0

�
(V̂t − Vt)

�∂Ĥ
∂v

�
t
− λ̂t(ĝ(t)− g(t)) + (Ẑt − Zt)

�∂Ĥ
∂z

�
t

�
dt
�

26

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



− E[(ŴT −WT )h
�
2(ŴT )]

= E
� � T

0

�
(b̂(t)− b(t))p̂t + (σ̂t − σt)q̂t − (Ŵt −Wt)

�∂Ĥ
∂ω

�
t

− (V̂t − Vt)
�∂Ĥ
∂v

�
t
+ λ̂t(ĝ(t)− g(t))− (Ẑt − Zt)

�∂Ĥ
∂z

�
t

�
dt
�

− E[(ŴT −WT )h
�
2(ŴT )]. (3.13)

Combining Equations (3.7)-(3.13) and using the definition of H, we obtain

J(û)− J(u) = I1 + I2

≥ E
� � T

0

�
Ĥ(t)−H(t)− (Ŵt −Wt)

�∂Ĥ
∂ω

�
t

− (V̂t − Vt)
�∂Ĥ
∂v

�
t
− (Ẑt − Zt)

�∂Ĥ
∂z

�
t

�
dt
�

= E
� � T

0

E
��

Ĥ(t)−H(t)− (Ŵt −Wt)
�∂Ĥ
∂ω

�
t

− (V̂t − Vt)
�∂Ĥ
∂v

�
t
− (Ẑt − Zt)

�∂Ĥ
∂z

�
t

�
|Ft

�
dt
�
. (3.14)

From the concavity of the function

(ω, v, z, u) → H(t,ω, v, z, u, λ̂t, p̂t, q̂t),

we get

Ĥ(t)−H(t) ≥
�∂Ĥ
∂ω

�
t
(Ŵt −Wt) +

�∂Ĥ
∂v

�
t
(V̂t − Vt)

+
�∂Ĥ
∂z

�
t
(Ẑt − Zt) +

�∂Ĥ
∂u

�
t
(ût − ut). (3.15)

Since u = ût maximizes

u → H(t, Ŵt, V̂t, Ẑt, u, λ̂t, p̂t, q̂t),
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we deduce that

d

du
H(t, Ŵt, V̂t, Ẑt, u, λ̂t, p̂t, q̂t)u=ût(ût − ut) ≥ 0,

that is

�∂Ĥ
∂u

�
t
(ût − ut) ≥ 0. (3.16)

From Equations (3.14), (3.15) and (3.16) we conclude that

J(û)− J(u) ≥ 0.

Since this holds for all u ∈ A, then û is optimal.

Consumption-Investment Problem in Incomplete Market

In this section, by the use of the sufficient maximum principle method we

study a consumption-investment problem under a recursive utility of Epstein-

Zin type in incomplete market. The incompleteness of the market comes from

the fact that it is assumed there is a risk that cannot be hedged perfectly.

Considering a recursive utility, written as a backward stochastic differential

equation, the generator of the Epstein-Zin recursive utility is not concave and

thus the above result cannot directly be applied. In order to use our sufficient

maximum principle, we first transform the backward stochastic differential

equation to an equivalent backward stochastic differential equation with a

concave generator. Next, with the new generator we derived for our system

the Hamiltonian H and its associated pair of adjoint processes pt and λt.

Then, from the terminal conditions of Yt and pt we assume a general form

for each of them at optimality allowing us to build the optimal strategies.

Finally, we end up getting the expression of the utility evaluated at these

optimal strategies.
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Problem Formulation

Here, we study a consumption-investment optimization problem with

Epstein-Zin utility under full observation. We assume that the objective of

the policymaker is to maximise the Epstein-Zin utility, at time 0,

J(c, π) = V π,c
0 (3.17)

driven by the backward stochastic differential equation (BSDE)





−dVt = g(ct, Vt)dt− Zc
t dBt − Z̃c

t dB̃t,

VT = U(WT ) =
W1−γ

T

1−γ
,

(3.18)

subject to the forward stochastic differential equation (FSDE)





dWt = Wt(r(Xt) + πtµ(Xt)− c̃t)dt+Wtπtσ(Xt)dBt,

W0 = ω,

(3.19)

where

g(c, v) = δ
(1− γ)v

1− 1
ψ

�� c

((1− γ)v)
1

1−γ

�1− 1
ψ − 1

�
. (3.20)

and





dXt = b(Xt)dt+ ρa(Xt)dBt + ρ̃a(Xt)dB̃t

X0 = x

(3.21)

Thus, we state our full observation optimal control of forward-backward stochas-

tic differential equations as follows:

Problem 1 (Full observation optimal control of forward-backward SDEs).

Find the optimal value function V ∗(ω, 0) ∈ R and the optimal controls π∗, c∗
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in the set of control A such that

V ∗(ω, 0) = sup
c,π∈A

J(c, π) = J(c∗, π∗) (3.22)

The solution of that problem is given by the following theorem.

Theorem 6. The optimal investment and consumption strategies to the full

observable utility maximisation problem (problem 1) are given by Equation

(3.41) and the associated optimal value function takes the form as in Equation

(3.43).

The remaining of this section is devoted to the proof of Theorem 6.

Sufficient Maximum Principle

In this subsection, we apply the ideas shown in Theorem 5 to solve

a full observation optimal control of forward-backward differential equations

stated in problem 1. Since this method is based on works for a concave

Hamiltonian (Øksendal & Sulem, 2009) which implies a concave generator,

our first objective is to check for the concavity. We obtain the following

Lemma 1

The function g given by Equation (3.20) is not jointly concave in c and v.

Proof. The Hessian matrix of the function (c, v) → g(c, v) is defined by

H(c, v) = H(c, x) = δ
a

�������

a(a− 1)ca−2xd dca−1xd−1

dca−1xd−1 d(d− 1)caxd−2

�������
with trace tr(H)

and determinant det(H) =
�
δ
a
ca−1xd−1

�2
(a(a − 1)d(d − 1) − d2) < 0 where

x = (1− γ)v > 0, c > 0, a = 1
1− 1

ψ

(0 < a < 1) and b = 1
1−γ

< 0. The associated

characteristic polynomial is λ2 − tr(H)λ + det(H) = 0. The negative sign of

the determinant means that λ1λ2 < 0; so one of the eigenvalues is positive.

That is, the Hessian matrix is not negative definite. Hence (c, v) → g(c, v) is

not jointly concave.
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Since our generator is not jointly concave with respect to c and v, we

perform a transformation that allows us to get our desired property.

Lemma 2

Assuming that a triplet (Vt, Zt, Z
c
t ) is a solution of the backward differential

equation (3.18). Consider the transformation

Yt =
1

1− 1
ψ

e−δt ((1− γ)Vt)
1
θ , (Zt, Z̃t) = e−δt(1− γ)

1
θ
−1V

1
θ
−1

t (Zc
t , Z̃

c
t ).

Then (Yt,Zt) satisfies

Yt = e−δT c
1− 1

ψ

T

1− 1
ψ

+

� T

t


δe−δs c

1− 1
ψ

s

1− 1
ψ

+
1

2
(θ − 1)

Z2
s

Ys


 ds−

� T

t

ZsdBs

−
� T

t

Z̃sdB̃s

and the generator in the the first integral is a concave function with respect

to (c,Y,Z) when θ < 0.

Proof. The function c → c
1− 1

ψ

1− 1
ψ

is concave since the second derivative is nega-

tive, that is − 1
ψ
c−1− 1

ψ < 0 (0 < ψ < 1). Moreover, the Hessian matrix of the

function (y, z) �→ z2

y
is defined by

H(y, z) =

�������

2z2

y3
−2z

y2

−2z
y2

2
y

�������

with trace tr(H) = 2
y

�
z2

y2
+ 1

�
and determinant det(H) = 0. The associated

characteristic polynomial is λ2 − 2
y

�
z2

y2
+ 1

�
λ = 0, that gives λ1 = 0 and

λ2 =
2
y

�
z2

y2
+ 1

�
> 0 as eigenvalues which means that the Hessian is positive

semidefinite. So (y, z) �→ z2

y
is a convex function since its Hessian matrix

is positive semidefinite. Hence (y, z) �→ 1
2
(θ − 1) z

2

y
is concave since θ < 0.

Therefore, the generator is concave since it is a sum of concave functions.
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Now, given that

e−δt((1− γ)Vt)
1
θ =

�
1− 1

ψ

�
Yt,

and

e−δt((1− γ)Vt)
1
θ
−1(Zc

t , Z̃
c
t ) = (Zt, Z̃t),

Itô’s formula applied to e−δt((1− γ)Vt)
1
θ gives

d
�
e−δt((1− γ)Vt)

1
θ

�

= −δe−δt((1− γ)Vt)
1
θdt+

1

θ
(1− γ)e−δt((1− γ)Vt)

1
θ
−1dVt

+
1

2

1

θ

�1
θ
− 1

�
(1− γ)2e−δt((1− γ)Vt)

1
θ
−2(dVt)

2

=
�
− δe−δt((1− γ)Vt)

1
θ

+
1

θ
(1− γ)e−δt((1− γ)Vt)

1
θ
−1
�
− δ

1− 1
ψ

c1−
1
ψ ((1− γ)Vt)

1− 1
θ

+
δ

1− 1
ψ

(1− γ)Vt

�
+

1

2

1

θ

�1
θ
− 1

�
(1− γ)2e−δt((1− γ)Vt)

1
θ
−2(Zc

t )
2

+
1

2

1

θ

�1
θ
− 1

�
(1− γ)2e−δt((1− γ)Vt)

1
θ
−2(Z̃c

t )
2
�
dt

+
1

θ
(1− γ)e−δt((1− γ)Vt)

1
θ
−1Zc

t dBt

+
1

θ
(1− γ)e−δt((1− γ)Vt)

1
θ
−1Z̃c

t dB̃t

=
�
− δe−δtc1−

1
ψ +

1

2

�
1− 1

ψ

�2

(1− θ)eδt((1− γ)Vt)
− 1

θZ2
t

+
1

2

�
1− 1

ψ

�2

(1− θ)eδt((1− γ)Vt)
− 1

θ Z̃2
t

�
dt

+
�
1− 1

ψ

�
ZtdBt +

�
1− 1

ψ

�
Z̃tdB̃t

=
�
− δe−δtc1−

1
ψ +

1

2

�
1− 1

ψ

�
(1− θ)

Z2
t + Z̃2

t

Yt

�
dt

+
�
1− 1

ψ

�
ZtdBt +

�
1− 1

ψ

�
Z̃tdB̃t

=
�
1− 1

ψ

�
dYt.
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Hence

dYt =
�
− δe−δt c

1− 1
ψ

1− 1
ψ

+
1

2
(1− θ)

Z2
t + Z̃2

t

Yt

�
dt+ ZtdBt + Z̃tdB̃t.

Integrating both sides from t to T , we have

Yt = e−δT W
1− 1

ψ

T

1− 1
ψ

+

� T

t

�
δe−δs c

1− 1
ψ

s

1− 1
ψ

+
1

2
(θ − 1)

Z2
s + Z̃2

s

Ys

�
ds−

� T

t

ZsdBs

−
� T

t

Z̃sdB̃s.

The generator g, for ct = c̃tWt, is then given by

g(c̃,W ,Y,Z) = δe−δt c̃
1− 1

ψ

t

1− 1
ψ

W1− 1
ψ

t +
1

2
(θ − 1)

Z2
t + Z̃2

t

Yt

. (3.23)

Then our equivalent value function is

J(c, π) = Yπ,c
0 . (3.24)

Thus the Hamiltonian becomes

H =
�
δe−δt c̃

1− 1
ψ

1− 1
ψ

W1− 1
ψ

t +
1

2
(θ − 1)

Z2
t + Z̃2

t

Yt

�
λt (3.25)

+Wt(rt + πtµt − c̃t)pt +Wtπtσtqt.

Then follows the associated pair of adjoint processes





dpt = −
�
δe−δtc̃

1− 1
ψ

t W− 1
ψ

t λt + (rt + πtµt − c̃t)pt

+πtσtqt

�
dt+ qtdBt + q̃tdB̃t,

p(T ) = e−δTW− 1
ψ

T λ(T ),

(3.26)
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and





dλt = λt

�
− 1

2
(θ − 1)

Z2
t+Z̃2

t

Y2
t

dt+ (θ − 1)Zt

Yt
dBt + (θ − 1) Z̃t

Yt
dB̃t

�
,

λ(0) = 1.

(3.27)

Taking the first derivative of H w.r.t c̃ and setting it to zero, we get

0 =
∂H
∂c̃

= δe−δtc̃−
1
ψW1− 1

ψ

t λt −Wtpt,

then

c̃t = δψe−δψtW−1
t

�λt

pt

�ψ

. (3.28)

Similarly, for the first derivative of H w.r.t π, we obtain

0 =
∂H
∂π

= Wtµtpt +Wtσtqt

= µtpt + σtqt,

then

µtpt + σtqt = 0. (3.29)

We define

φ(W ,λ, X, t) = e−δtW− 1
ψ

t λte
D(X,t) = pt,

with D(X, t) the process which satisfies the backward stochastic differential
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equation





dD(X, t) = −F1(X,D,G1, t)dt+ ρG1(X, t)dBt + ρ̃G1(X, t)dB̃t

D(X, T ) = 0,

(3.30)

where F1(X,D,G, t) and G1(X, t) will be determined.

We first give the conditional form of the process pt.

Integrating both sides of Equation (3.32) from t to T , we obtain

p(T )− pt =

� T

t

�
−

�
δe−δsc̃

1− 1
ψ

s W− 1
ψ

s λs + (rs + πsµs − c̃s)ps

+ πsσsqs

�
ds+ qsdBs + q̃sdB̃s

�
.

Applying the conditional expectation on both sides yields

pt = E
� � T

t

�
δe−δsc̃

1− 1
ψ

s W− 1
ψ

s λs + (rs + πsµs − c̃s)ps

+ πsσsqs

�
ds+ p(T )|Ft

�
, (3.31)

where,

E
� � T

t

qsdBs|Ft

�
= 0 and E

� � T

t

q̃sdB̃s|Ft

�
= 0,

since, by definition of a backward stochastic differential equation qs and q̃s

belong to L2[t, T ] for all s ∈ [t, T ].

On first hand, let us apply the Ito’s formula on the process pt. Calculation

yields

dW− 1
ψ

t = W− 1
ψ

t

��
− 1

ψ
(rt + πtµt − c̃t) +

1

2

1

ψ

�
1 +

1

ψ

�
π2
t σ

2
t

�
dt− 1

ψ
πtσtdBt

�
,
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also

de−δt+D(X,t)

= e−δt+D(X,t)
��

− δ − F1(X,D,G1, t) +
1

2
G2

1(X, t)
�
dt+ ρG1(X, t)dBt

+ ρ̃G1(X, t)dB̃t

�
,

and

d
�
W− 1

ψ

t λt

�

= W− 1
ψ

t λt

��
− 1

ψ
(rt + πtµt − c̃t) +

1

2

1

ψ

�
1 +

1

ψ

�
π2
t σ

2
t −

1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

− 1

ψ
πtσt(θ − 1)

Zt

Yt

�
dt

+
�
− 1

ψ
πtσt + (θ − 1)

Zt

Yt

�
dBt + (θ − 1)

Z̃t

Yt

dB̃t

�
.

Thus, pt satisfies the backward differential equation

dpt = pt

��
− 1

ψ
(rt + πtµt − c̃t) +

1

2

1

ψ

�
1 +

1

ψ

�
π2
t σ

2
t

− 1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

− 1

ψ
πtσt(θ − 1)

Zt

Yt

− δ − F1(X,D,G1, t)

+
1

2
G2

1(X, t) +
�
− 1

ψ
πtσt + (θ − 1)

Zt

Yt

�
ρG1(X, t)

+ (θ − 1)
Z̃t

Yt

ρ̃G1(X, t)
�
dt

+
�
− 1

ψ
πtσt + (θ − 1)

Zt

Yt

+ ρG1(X, t)
�
dBt

+
�
(θ − 1)

Z̃t

Yt

+ ρ̃G1(X, t)
�
dB̃t

�
. (3.32)

Comparing the diffusion terms in Equations (3.26) and (3.32), we get

qt = pt

�
− 1

ψ
πtσt + (θ − 1)

Zt

Yt

+ ρG1(X, t)
�
, (3.33)
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and

q̃t = pt

�
(θ − 1)

Z̃t

Yt

+ ρ̃G1(X, t)
�
. (3.34)

Secondly, by the non-linear Feynman-Kǎc formula applying to Equation (3.31),

we get that φ(W ,λ, X, t) satisfies the following partial differential equation

φt + bφx + α1φW + α2φλ +
1

2
a2φxx +

1

2
β2
1φWW + β1ρaφxW

+
1

2
(β2

2 + β̃2
2)φλλ + (β2ρa+ β̃2ρ̃a)φxλ + β1β2φλW + f(X, t)φ = 0, (3.35)

where we denote

φt =
∂φ

∂t
, φx =

∂φ

∂x
, φxx =

∂2φ

∂x2
,

α1(W , t) = Wt(r(Xt) + πtµ(Xt)− c̃t),

β1(W , t) = Wtπtσ(Xt),

α2(λ, t) = −1

2
(θ − 1)λt

Z2
t + Z̃2

t

Y2
t

β2(λ, t) = (θ − 1)λt
Zt

Yt

β̃2(λ, t) = (θ − 1)λt
Z̃t

Yt

,

and

dXt = b(Xt, t)dt+ ρa(Xt, t)dBt + ρ̃a(Xt, t)dB̃t.

Moreover f(X, t)pt is the drift of pt.

Also,

φt = Dtφ− δφ, φx = Dxφ, WtφW = − 1

ψ
φ, λtφλ = φ,

φxx = Dxxφ+ (Dxφ)
2, W2

t φWW =
1

ψ

�
1 +

1

ψ

�
φ, φλλ = 0,

WtφxW = − 1

ψ
Dxφ, λtφxλ = Dxφ, WtλtφWλ = − 1

ψ
φ.
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Substituting the later expressions into Equation (3.35) gives

Dt − δ + bDx −
1

ψ

α1

Wt

+
α2

λt

+
1

2
a2Dxx +

1

2
a2(Dx)

2

+
1

2

1

ψ

�
1 +

1

ψ

� β2
1

W2
t

− 1

ψ

β1

Wt

(ρaDx)−
1

ψ

β1β2

Wtλt

+
β2ρ+ β̃2ρ̃

λt

(aDx) + f(X, t) = 0.

Thus, from the non-linear Feynman-Kǎc formula, we obtain

F1(X,D,G1, t) = −δ − 1

ψ

α1

Wt

+
α2

λt

+
1

2

1

ψ

�
1 +

1

ψ

� β2
1

W2
t

+
1

2
G2

1(X, t) +
�
− 1

ψ

β1ρ

Wt

+
β2ρ+ β̃2ρ̃

λt

�
G1(X, t)

− 1

ψ

β1β2

Wtλt

+ f(X, t), (3.36)

G1(X, t) = aDx.

Substituting α1, α2, β1, β̃1, β2, β̃2 by their respective expressions gives

F1(X,D,G1, t) = −δ − 1

ψ
(rt + πtµt − c̃t) +

1

2

1

ψ

�
1 +

1

ψ

�
π2
t σ

2
t

− 1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

+
1

2
G2

1(X, t)

+
�
− 1

ψ
πtσtρt + (θ − 1)

ρZt + ρ̃Z̃t

Yt

�
G1(X, t)

− 1

ψ
πtσt(θ − 1)

Zt

Yt

+ f(X, t). (3.37)

The computation of f(X, t) is as follow

f(X, t) =
1

pt

�
δe−δtc̃

1− 1
ψ

t W− 1
ψ

t λt + (rt + πtµt − c̃t)pt + πtσtqt

�

=
1

pt

�
c̃tpt + (rt + πtµt − c̃t)pt + πtσtpt

�
− 1

ψ
πtσt

+ (θ − 1)
Zt

Yt

+ ρG1(X, t)
��

= rt + πtµt + πtσt

�
− 1

ψ
πtσt + (θ − 1)

Zt

Yt

+ ρG1(X, t)
�
.
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Then

F1(X,D,G1, t)

= −δ − 1

ψ
(rt + πtµt − c̃t) +

1

2

1

ψ

�
1 +

1

ψ

�
π2
t σ

2
t −

1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

+
1

2
G2

1(X, t) +
�
− 1

ψ
πtσtρ+ (θ − 1)

ρZt + ρ̃Z̃t

Yt

�
G1(X, t)

− 1

ψ
πtσt(θ − 1)

Zt

Yt

+ f(X, t)

= −δ +
�
1− 1

ψ

�
rt +

�
1− 1

ψ

�
πtµt +

1

ψ
c̃t −

1

2

1

ψ

�
1− 1

ψ

�
π2
t σ

2
t

− 1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

+
��

1− 1

ψ

�
πtσtρ+ (θ − 1)

ρZt + ρ̃Z̃t

Yt

�
G1(X, t)

+
1

2
G2

1(X, t) +
�
1− 1

ψ

�
πtσt(θ − 1)

Zt

Yt

.

From the terminal condition of the process Yt, we assume at the optimal

strategies that

Yt =
1

1− 1
ψ

e−δtW1− 1
ψ

t eE(X,t),

where the process E(X, t) satisfies the BSDE





dE(X, t) = −F2(X,E,G2, t)dt+ ρG2(X, t)dBt + ρ̃G2(X, t)dB̃t,

E(X, T ) = 0.

The diffusion terms of its associated BSDE are given by

Zt = Yt

��
1− 1

ψ

�
πtσt + ρG2(X, t)

�
, (3.38)

Z̃t = Ytρ̃G2(X, t), (3.39)

and its drift is

− Yt

�
− δ +

�
1− 1

ψ

�
(rt + πtµt − c̃t)−

1

2

1

ψ

�
1− 1

ψ

�
π2
t σ

2
t

− F2(X,E,G2, t) +
1

2
G2

2(X, t) +
�
1− 1

ψ

�
πtσtρG2(X, t)

�
. (3.40)
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Let us now define F2(X,E,G2, t). In order to do that we equate expressions

(3.23) and (3.40).

δe−δt c̃
1− 1

ψ

t

1− 1
ψ

W1− 1
ψ

t +
1

2
(θ − 1)

Z2
t + Z̃2

t

Yt

+ Yt

�
− δ +

�
1− 1

ψ

�
(rt + πtµt − c̃t)−

1

2

1

ψ

�
1− 1

ψ

�
π2
t σ

2
t

− F2(X,E,G2, t) +
1

2
G2

2(X, t) +
�
1− 1

ψ

�
πtσtρG2(X, t)

�
= 0

Factoring by Yt, we get

Yt

�
c̃te

D(X,t)−E(X,t) +
1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

− δ +
�
1− 1

ψ

�
(rt + πtµt − c̃t)−

1

2

1

ψ

�
1− 1

ψ

�
π2
t σ

2
t

− F2(X,E,G2, t) +
1

2
G2

2(X, t) +
�
1− 1

ψ

�
πtσtρG2(X, t)

�
= 0,

then simplifying Yt and substituting Zt by its expression in Equation (3.38),

it follows that

F2(X,E,G2, t)

= −δ +
�
1− 1

ψ

�
rt +

�
1− 1

ψ

�
πtµt +

1

ψ
c̃t +

�
eD(X,t)−E(X,t) − 1

�
c̃t

− 1

2

1

ψ

�
1− 1

ψ

�
π2
t σ

2
t +

1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

+
1

2
G2

2(X, t)

+
�
1− 1

ψ

�
πtσtρG2(X, t).

Now we show that D(X, t) = E(X, t) = 1
θ
Yt.

Assuming G1(X, t) = G(X, t) = G2(X, t) and substituting Yt, Zt by their

respective expressions in Equation (3.37), we get

F1(X,D,G, t)

= F2(X,E,G, t)− (θ − 1)
Z2
t + Z̃2

t

Y2
t

+ (θ − 1)
ρZt + ρ̃Z̃t

Yt

G(X, t)

+
�
1− 1

ψ

�
πtσt(θ − 1)

Zt

Yt

−
�
eD(X,t)−E(X,t) − 1

�
c̃t

= F2(X,E,G, t).
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Thus, from Equations (3.28) and (3.29), the optimal strategies are given by

c̃∗t = δψe−
ψ
θ
Yt and π∗

t =
1

γ

1

σ2
(µt + σtρZt), (3.41)

where (Yt, Zt) solution of the BSDE (Xing, 2017)




−dYt = F (X, Y, Z, t)dt− ρZtdBt − ρ̃ZtdB̃t,

YT = 0,

with

F (X, Y, Z, t)

= −θδ + (1− γ)rt +
1

2
Z2

t +
θ

ψ
c̃∗t + (1− γ)π∗

t (µt + σtρZt)

− 1

2
γ(1− γ)(π∗

t )
2σ2

t

= −θδ + (1− γ)rt +
1− γ

2γ

µ2
t

σ2
t

+ θ
δψ

ψ
e−

ψ
θ
Yt +

1− γ

γ

µtρ

σt

Zt

+
1

2

�
1 +

1− γ

γ
ρ2
�
Z2

t . (3.42)

Let us now compute the optimal value function. That is,

V ∗(ω, 0) = sup
c,π∈A

E
� � T

0

f(cs, Vs)ds+
W1−γ

T

1− γ

�
.

Since

π∗
t =

1

γ

1

σ2
(µt + σtρZt) and c∗t = W∗

t c̃t = δψW∗
t e

−ψ
θ
Yt ,

then

f(c∗s, V
∗
s ) = δ

1

1− 1
ψ

�
δψW∗

s e
−ψ

θ
Ys

�1− 1
ψ
((1− γ)V ∗

s )
1− 1

θ − δθV ∗
s

= δ
1

1− 1
ψ

δψ−1(W∗
s )

1− 1
ψ e−

ψ−1
θ

Ys

�
(W∗

s )
1−γeYs

�1− 1
θ

− δθ
1

1− γ
(W∗

s )
1−γeYs

=
θ

1− γ
δψ(W∗

s )
1−γe(1−

ψ
θ )Ys − θ

1− γ
δ(W∗

s )
1−γeYs

f(c∗s, V
∗
s ) =

θ

1− γ
δ(W∗

s )
1−γeYs

�
δψ−1e−

ψ
θ
Ys − 1

�
.
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Thus

V ∗(ω, 0) =
1

1− γ
E
�
θδ

� T

0

(W∗
s )

1−γeYs

�
δψ−1e−

ψ
θ
Ys − 1

�
ds+ (W∗

T )
1−γ

�
.

(3.43)

Consumption-Investment Problem with Claim

In this section, we consider the external factor as a process that repre-

sents a non-traded asset. We assume here that even though the asset can not

be traded directly, we can still observe its value. Our goal now is to solve a

utility maximisation problem taking into account the introduction of a claim

into our model. We still have a forward-backward stochastic differential equa-

tion system. Proceeding as in the previous sections, this section is divided into

three parts. Firstly working with the transformed utility, we derived the new

Hamiltonian Hh and its associated pair of adjoint processes pht and λh
t driven

respectively by a BSDE and a FSDE. Then, from the terminal conditions of

Yt and pht we assume a general form for each of them at optimality allowing

us to build the optimal strategies. Finally, we end up getting the expression

of the utility evaluated at these optimal strategies.

Problem Formulation

Here, we consider the case of contingent claims hedged with the traded

asset and the savings account. We assume that the claim pay off is of the form

ξ = h(XT ) for some bounded function h. We also assume that the objective

of the policymaker is to maximize the Epstein-Zin utility, at time 0,

Jh(c, π) = (V h
0 )

π,c (3.44)

driven by the backward stochastic differential equation (BSDE)





−dV h
t = g(ct, V

h
t )dt− (Zh

t )
cdBt − (Z̃h

t )
cdB̃t,

V h
T = U(Wh

T ) =
(WT+λh(XT ))1−γ

1−γ
,

(3.45)
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subject to the forward stochastic differential equation (FSDE)




dWh
t = dWt + λdh(Xt)

Wh
0 = ω − vb + λh(x),

(3.46)

where

g(c, v) = δ
(1− γ)v

1− 1
ψ

�� c

((1− γ)v)
1

1−γ

�1− 1
ψ − 1

�
, (3.47)

and h(Xt) the claim at time t.

Thus, we state our new full observation optimal control of forward-backward

stochastic differential equations as follows:

Problem 2 (Full observation optimal control of forward-backward SDEs).

Find the optimal value function V h(ω − vb,λ) ∈ R and the optimal controls

π∗, c∗ in the set of controls A such that

V h(ω − vb,λ) = sup
c,π∈A

Jh(c, π) = Jh(c∗, π∗). (3.48)

The solution of that problem is given by the following theorem.

Theorem 7. The optimal consumption and investment strategies to the full

observable utility maximisation problem with claim (problem 2) are respec-

tively given by Equations (3.62) and (3.63) and the associated optimal value

function takes the form as in Equation (3.64).

The remaining of this section is devoted to the proof of Theorem 7.

Application to Optimal Consumption-Investment with Claim

In this subsection, we solve a full observation optimal control of forward-

backward differential equations with claim stated in problem 2.

The value function is given by

V h(ω − vb,λ) = sup
c,π∈A

E
� � T

0

f(cs, V
h
s )ds+

(WT + λh(XT ))
1−γ

1− γ

�
.
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In order to get V h(ω − vb,λ) we proceed similarly as in the previous section.

The new wealth is then given by



dWh
t = dWt + λdh(X, t)

= (Wt(rt + πtµt − c̃t) + λB(X, t))dt+ (Wtπtσt + λρA(X, t))dBt

+λρ̃A(X, t)dB̃t

Wh
0 = ω − vb + λh(X0),

where

dh(X, t) = B(X, t)dt+ ρA(X, t)dBt + ρ̃A(X, t)dB̃t.

The Hamiltonian is now given by

Hh =
�
δe−δt c̃

1− 1
ψ

1− 1
ψ

W1− 1
ψ

t +
1

2
(θ − 1)

Z2
t + Z̃2

t

Yt

�
λh
t

+ (Wt(rt + πtµt − c̃t) + λB(X, t))pht + (Wtπtσt + λρA(X, t))qht

+ λρ̃A(X, t)q̃ht . (3.49)

Then follows the associated pair of adjoint processes





dpht = qht dBt + q̃ht dB̃t,

ph(T ) = e−δT (WT + λh(XT ))
− 1

ψλh(T ),

(3.50)

and





dλh
t = λh

t

�
− 1

2
(θ − 1)

Z2
t+Z̃2

t

Y2
t

dt+ (θ − 1)Zt

Yt
dBt + (θ − 1) Z̃t

Yt
dB̃t

�
,

λh(0) = 1.

(3.51)

Taking the first derivative of Hh w.r.t c̃ and setting it to zero, we get

0 =
∂Hh

∂c̃

= δe−δtc̃−
1
ψW1− 1

ψ

t λh
t −Wtp

h
t ,
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then

c̃t = δψe−δψtW−1
t

�λh
t

pht

�ψ

. (3.52)

Similarly, for the first derivative of Hh w.r.t π, we obtain

0 =
∂Hh

∂π

= Wtµtp
h
t +Wtσtq

h
t

= µtp
h
t + σtq

h
t ,

then

µtp
h
t + σtq

h
t = 0. (3.53)

We define

φ(W ,λh, X, t) = e−δt(Wt + λh(Xt))
− 1

ψλh
t e

Dh(X,t) = pht ,

with Dh(X, t) the process which satisfies the BSDE





dDh(X, t) = −F1(X,Dh, Gh
1 , t)dt+ ρGh

1(X, t)dBt + ρ̃Gh
1(X, t)dB̃t

Dh(X, T ) = 0,

where F1(X,Dh, Gh, t) and Gh
1(t) will be determined.

We first give the conditional form of the process pht .

Integrating both sides of Equation (3.50) from t to T , we obtain

ph(T )− pht =

� T

t

�
qhsdBs + q̃hsdB̃s

�

Applying the conditional expectation on both sides yields

pht = E
�
ph(T )|Ft

�
, (3.54)
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where

E
� � T

t

qhsdBs|Ft

�
= 0,

and

E
� � T

t

q̃hsdB̃s|Ft

�
= 0,

since, by definition of a backward stochastic differential equation qhs and q̃hs

belong to L2[t, T ] for all s ∈ [t, T ].

On first hand, let us apply the Ito’s formula on the process pht .

Calculation yields

de−δt+Dh(X,t)

= e−δt+Dh(X,t)
��

− δ − F1(X,Dh, Gh
1 , t) +

1

2
(Gh

1)
2(X, t)

�
dt

+ ρGh
1(X, t)dBt + ρ̃Gh

1(X, t)dB̃t

�
,

d(Wt + λh(Xt))
− 1

ψ

=
�
− 1

ψ
(Wt + λh(Xt))

−1− 1
ψWt(rt + πtµt − c̃t)

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2− 1
ψW2

t π
2
t σ

2
t

− 1

ψ
λhx(Wt + λh(Xt))

−1− 1
ψ b(Xt)

− 1

2

1

ψ
λhxx(Wt + λh(Xt))

−1− 1
ψ a2(Xt)

+
1

2

1

ψ

�
1 +

1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2− 1

ψ a2(Xt)

+
1

ψ

�
1 +

1

ψ

�
λhx(Wt + λh(Xt))

−2− 1
ψ ρa(Xt)Wtπtσt

�
dt

+
�
− 1

ψ
(Wt + λh(Xt))

−1− 1
ψWtπtσt

− 1

ψ
λhx(Wt + λh(Xt))

−1− 1
ψ ρa(Xt)

�
dBt

+
�
− 1

ψ
λhx(Wt + λh(Xt))

−1− 1
ψ ρ̃a(Xt)

�
dB̃t,
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d
�
(Wt + λh(Xt))

− 1
ψλh

t

�

=(Wt + λh(Xt))
− 1

ψλh
t

��
− 1

ψ
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t −

1

ψ
λhx(Wt + λh(Xt))

−1b(Xt)

− 1

2

1

ψ
λhxx(Wt + λh(Xt))

−1a2(Xt)−
θ − 1

ψ

Z̃t

Yt

λhx(Wt + λh(Xt))
−1ρ̃a(Xt)

+
1

ψ

�
1 +

1

ψ

�
λhx(Wt + λh(Xt))

−2ρa(Xt)Wtπtσt

− 1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

− θ − 1

ψ

Zt

Yt

(Wt + λh(Xt))
−1Wtπtσt

− θ − 1

ψ

Zt

Yt

λhx(Wt + λh(Xt))
−1ρa(Xt)

+
1

2

1

ψ

�
1 +

1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2a2(Xt)

�
dt

+
�
− 1

ψ
(Wt + λh(Xt))

−1Wtπtσt −
1

ψ
λhx(Wt + λh(Xt))

−1ρa(Xt)

+ (θ − 1)
Zt

Yt

�
dBt

+
�
− 1

ψ
λhx(Wt + λh(Xt))

−1ρ̃a(Xt) + (θ − 1)
Z̃t

Yt

�
dB̃t

�
.

Thus, pht satisfies the BSDE

dpht

= pht

�
− δ − F1(X,Dh, Gh

1 , t) +
1

2
Gh2

1 (X, t)

− 1

ψ
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t

− 1

ψ
λhx(Wt + λh(Xt))

−1b(Xt)−
1

2

1

ψ
λhxx(Wt + λh(Xt))

−1a2(Xt)

+
1

2

1

ψ

�
1 +

1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2a2(Xt)

+
1

ψ

�
1 +

1

ψ

�
λhx(Wt + λh(Xt))

−2ρa(Xt)Wtπtσt

− 1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

− θ − 1

ψ

Zt

Yt

(Wt + λh(Xt))
−1Wtπtσt

− θ − 1

ψ

Zt

Yt

λhx(Wt + λh(Xt))
−1ρa(Xt)−

θ − 1

ψ

Z̃t

Yt

λhx(Wt + λh(Xt))
−1

− 1

ψ
(Wt + λh(Xt))

−1WtπtσtρG
h
1(X, t)
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− 1

ψ
λhx(Wt + λh(Xt))

−1ρ2a(Xt)G
h
1(X, t) + (θ − 1)

Zt

Yt

ρGh
1(X, t)

− 1

ψ
λhx(Wt + λh(Xt))

−1ρ̃2a(Xt)G
h
1(X, t) + (θ − 1)

Z̃t

Yt

ρ̃Gh
1(X, t)

�
dt

pht

�
− 1

ψ
(Wt + λh(Xt))

−1Wtπtσt −
1

ψ
λhx(Wt + λh(Xt))

−1ρa(Xt)

+ (θ − 1)
Zt

Yt

+ ρGh
1(X, t)

�
dBt

pht

�
− 1

ψ
λhx(Wt + λh(Xt))

−1ρ̃a(Xt) + (θ − 1)
Z̃t

Yt

+ ρ̃Gh
1(X, t)

�
dB̃t (3.55)

Comparing the diffusion terms in Equations (3.50) and (3.55), we get

qht = pht

�
− 1

ψ
(Wt + λh(Xt))

−1Wtπtσt −
1

ψ
λhx(Wt + λh(Xt))

−1ρa(Xt)

+ (θ − 1)
Zt

Yt

+ ρGh
1(X, t)

�
,

and

q̃ht = pht

�
− 1

ψ
λhx(Wt + λh(Xt))

−1ρ̃a(Xt) + (θ − 1)
Z̃t

Yt

+ ρ̃Gh
1(X, t)

�
.

Secondly, by the non-linear Feynman-Kǎc formula we get that φ(W ,λh, X, t)

satisfies the following partial differential equation

φt + bφx + α1φW + α2φλ +
1

2
a2φxx +

1

2
β2
1φWW + β1ρaφxW

+
1

2
(β2

2 + β̃2
2)φλλ + (β2ρa+ β̃2ρ̃a)φxλ + β1β2φλW + fh(X, t)φ = 0, (3.56)

where we denote

φt =
∂φ

∂t
, φx =

∂φ

∂x
, φxx =

∂2φ

∂x2
,

also

α1(W , t) = Wt(r(Xt) + πtµ(Xt)− c̃t), β1(W , t) = Wtπtσ(Xt),

α2(λ, t) = −1

2
(θ − 1)λt

Z2
t + Z̃2

t

Y2
t

, β2(λ, t) = (θ − 1)λh
t

Zt

Yt

,

β̃2(λ, t) = (θ − 1)λh
t

Z̃t

Yt

,
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and

dXt = b(Xt, t)dt+ ρa(Xt, t)dBt + ρ̃a(Xt, t)dB̃t.

Moreover fh(X, t)pht is the drift of pht .

Also,

φt = Dh
t φ− δφ,

φx = − 1

ψ
λhx(Wt + λh(Xt))

−1φ+Dh
xφ,

φW = − 1

ψ
(Wt + λh(Xt))

−1φ, φWλ = − 1

ψ
(λh

t )
−1(Wt + λh(Xt))

−1φ,

φxx = − 1

ψ
λhxx(Wt + λh(Xt))

−1φ+
1

ψ

�
1 +

1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2φ

− 1

ψ
λhxD

h
x(Wt + λh(Xt))

−1φ+Dh
xxφ+ (Dh

x)
2φ,

φλ = (λh
t )

−1φ, φλλ = 0,

φWW =
1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2φ,

φxW =
1

ψ

�
1 +

1

ψ

�
λhx(Wt + λh(Xt))

−2φ− 1

ψ
(Wt + λh(Xt))

−1Dh
xφ,

φxλ = − 1

ψ
λhx(λ

h
t )

−1(Wt + λh(Xt))
−1φ+ (λh

t )
−1Dh

xφ.

Substituting the later expressions into Equation (3.56) gives

Dh
t − δ − 1

ψ
(Wt + λh(Xt))

−1bλhx + bDh
x −

1

ψ
α1(Wt + λh(Xt))

−1

+ α2(λ
h
t )

−1 +
1

2
a2Dh

xx +
1

2
(aDh

x)
2 − 1

2

1

ψ
(Wt + λh(Xt))

−1a2λhxx

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2λ2a2h2
x −

1

ψ
(Wt + λh(Xt))

−1a2λhxD
h
x

+
1

2

1

ψ

�
1 +

1

ψ

�
β2
1(Wt + λh(Xt))

−2 +
1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2β1ρaλhx

− 1

ψ
(Wt + λh(Xt))

−1(β2ρa+ β̃2ρ̃a)λhx(λ
h
t )

−1 + (β2ρa+ β̃2ρ̃a)(λ
h
t )

−1Dh
x

− 1

ψ
(Wt + λh(Xt))

−1β1β2(λ
h
t )

−1 − 1

ψ
(Wt + λh(Xt))

−1β1ρaD
h
x

+ fh(X, t) = 0.
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Thus, from the non-linear Feynman-Kǎc formula, we obtain

F1(X,Dh, Gh
1 , t)

= −δ − 1

ψ
(Wt + λh(Xt))

−1bλhx −
1

ψ
α1(Wt + λh(Xt))

−1 + α2(λ
h
t )

−1

+
1

2
(Gh

1)
2 − 1

2

1

ψ
(Wt + λh(Xt))

−1a2λhxx −
1

ψ
(Wt + λh(Xt))

−1aλhxG
h
1

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2λ2a2h2
x −

1

ψ
(Wt + λh(Xt))

−1β1ρG
h
1

+
1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2β1ρaλhx −
1

ψ
(Wt + λh(Xt))

−1β1β2(λ
h
t )

−1

− 1

ψ
(Wt + λh(Xt))

−1(β2ρ+ β̃2ρ̃)aλhx(λ
h
t )

−1 + (β2ρ+ β̃2ρ̃)(λ
h
t )

−1Gh
1

+
1

2

1

ψ

�
1 +

1

ψ

�
β2
1(Wt + λh(Xt))

−2 + fh(X, t) (3.57)

with Gh
1 = aDh

x.

Substituting α1, α2, β1, β̃1, β2, β̃2 by their respective expressions into

Equation (3.57) gives

F1(X,Dh, Gh
1 , t)

= −δ − 1

ψ
(Wt + λh(Xt))

−1bλhx −
1

ψ
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

− 1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

+
1

2
(Gh

1)
2 − 1

2

1

ψ
(Wt + λh(Xt))

−1a2λhxx

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2λ2a2h2
x −

1

ψ
(Wt + λh(Xt))

−1aλhxG
h
1

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t + (θ − 1)

ρZt + ρ̃Z̃t

Yt

Gh
1

+
1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2Wtπtσtρaλhx

− 1

ψ
(Wt + λh(Xt))

−1(θ − 1)
ρZt + ρ̃Z̃t

Yt

aλhx

− 1

ψ
(Wt + λh(Xt))

−1Wtπtσt(θ − 1)
Zt

Yt

− 1

ψ
(Wt + λh(Xt))

−1WtπtσtρG
h
1 .

(3.58)

From the terminal condition of the process Yt, we assume at the optimal

strategies that
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Yt =
1

1− 1
ψ

e−δt(Wt + λh(Xt))
1− 1

ψ eE
h(X,t),

where the process Eh(X, t) satisfies the BSDE





dEh(X, t) = −F2(X,Eh, Gh
2 , t)dt+ ρGh

2(X, t)dBt + ρ̃Gh
2(X, t)dB̃t

Eh(X, T ) = 0.

By the use of Itô’s formula, we have the following

d(Wt + λh(Xt))
1− 1

ψ

=
��

1− 1

ψ

�
(Wt + λh(Xt))

− 1
ψWt(rt + πtµt − c̃t)

− 1

2

1

ψ

�
1− 1

ψ

�
(Wt + λh(Xt))

−1− 1
ψW2

t π
2
t σ

2
t

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

− 1
ψ b(Xt)

+
1

2

�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

− 1
ψ a2(Xt)

− 1

2

1

ψ

�
1− 1

ψ

�
λ2h2

x(Wt + λh(Xt))
−1− 1

ψ a2(Xt)

− 1

ψ

�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1− 1
ψ ρa(Xt)Wtπtσt

�
dt

+
��

1− 1

ψ

�
(Wt + λh(Xt))

− 1
ψWtπtσt

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

− 1
ψ ρa(Xt)

�
dBt

+
��

1− 1

ψ

�
λhx(Wt + λh(Xt))

− 1
ψ ρ̃a(Xt)

�
dB̃t

and

de−δt+Eh(X,t)

= e−δt+Eh(X,t)
��

− δ − F2(X,Eh, Gh
2 , t) +

1

2
(Gh

2)
2(X, t)

�
dt

+ ρGh
2(X, t)dBt + ρ̃Gh

2(X, t)dB̃t

�
,

Then the diffusion terms of the associated BSDE of the process Yt are given

by
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Zt = Yt

��
1− 1

ψ

�
(Wt + λh(Xt))

−1Wtπtσt + ρGh
2(X, t)

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1ρa(Xt)
�

(3.59)

Z̃t = Yt

��
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1ρ̃a(Xt) + ρ̃Gh
2(X, t)

�
, (3.60)

and its drift is

− Yt

�
− δ − F2(X,Eh, Gh

2 , t) +
1

2
(Gh

1)
2(X, t)

+
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

− 1

2

1

ψ

�
1− 1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1b(Xt)

+
1

2

�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

−1a2(Xt)

− 1

2

1

ψ

�
1− 1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2a2(Xt)

− 1

ψ

�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−2ρa(Xt)Wtπtσt

+
�
1− 1

ψ

�
(Wt + λh(Xt))

−1WtπtσtρG
h
2(X, t)

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)G
h
2(X, t)

�
(3.61)

In order to find F2(X,Eh, Gh
2 , t) we equate expressions (3.47) and (3.61).

δe−δt c̃
1− 1

ψ

t

1− 1
ψ

W1− 1
ψ

t +
1

2
(θ − 1)

Z2
t + Z̃2

t

Yt

+ Yt

�
− δ − F2(X,Eh, Gh

2 , t) +
1

2
(Gh

1)
2(X, t)

+
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

− 1

2

1

ψ

�
1− 1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1b(Xt)

+
1

2

�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

−1a2(Xt)

− 1

2

1

ψ

�
1− 1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2a2(Xt)
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− 1

ψ

�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−2ρa(Xt)Wtπtσt

+
�
1− 1

ψ

�
(Wt + λh(Xt))

−1WtπtσtρG
h
2(X, t)

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)G
h
2(X, t)

�
= 0

Factoring by Yt, we get

Yt

�
δc̃

1− 1
ψ

t (Wt + λh(Xt))
−1+ 1

ψW1− 1
ψ

t e−Eh(X,t) +
1

2
(θ − 1)

Z2
t + Z̃2

t

Y2
t

− δ − F2(X,Eh, Gh
2 , t) +

�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

− 1

2

1

ψ

�
1− 1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t +

1

2
(Gh

1)
2(X, t)

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1b(Xt)

+
1

2

�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

−1a2(Xt)

− 1

2

1

ψ

�
1− 1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2a2(Xt)

− 1

ψ

�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−2ρa(Xt)Wtπtσt

+
�
1− 1

ψ

�
(Wt + λh(Xt))

−1WtπtσtρG
h
2(X, t)

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)G
h
2(X, t)

�
= 0,

then substituting Zt and Z̃t by their respective expressions in Equations (3.59)

and (3.60) yields

F2(X,Eh, Gh
2 , t)

= δc̃
1− 1

ψ

t (Wt + λh(Xt))
−1+ 1

ψW1− 1
ψ

t e−Eh(X,t) − δ +
1

2
θ(Gh

1)
2(X, t)

+
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

− 1

2

�
1− 1

ψ

�
γ(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t

+
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1b(Xt)

+
1

2

�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

−1a2(Xt)
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− 1

2

�
1− 1

ψ

�
γλ2h2

x(Wt + λh(Xt))
−2a2(Xt)

−
�
1− 1

ψ

�
γλhx(Wt + λh(Xt))

−2ρa(Xt)Wtπtσt

+ θ
�
1− 1

ψ

�
(Wt + λh(Xt))

−1WtπtσtρG
h
2(X, t)

+ θ
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)G
h
2(X, t).

Similarly if Gh
1(X, t) = Gh

2(X, t) = Gh(X, t) then Dh(X, t) = Eh(X, t).

Assuming Gh
1(X, t) = Gh

2(X, t) and substituting Zt, Z̃t by their respective

expressions in Equations (3.59) and (3.60), we get

F1(X,Dh, Gh
1 , t)

= −δ − 1

ψ
(Wt + λh(Xt))

−1bλhx −
1

ψ
(Wt + λh(Xt))

−1Wt(rt + πtµt − c̃t)

− 1

2
(θ − 1)

�
1− 1

ψ

�2

(Wt + λh(Xt))
−2W2

t π
2
t σ

2
t

− 1

2
(θ − 1)

�
1− 1

ψ

�2

λ2h2
x(Wt + λh(Xt))

−2a2(Xt) +
1

2
(θ − 1)(Gh

2)
2(X, t)

− (θ − 1)
�
1− 1

ψ

�2

λhx(Wt + λh(Xt))
−2Wtπtσtρa(Xt)

− (θ − 1)
�
1− 1

ψ

�
(Wt + λh(Xt))

−1WtπtσtρG
h
2(X, t)

− (θ − 1)
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)G
h
2(X, t)

+
1

2
(Gh

1)
2 − 1

2

1

ψ
(Wt + λh(Xt))

−1a2λhxx

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2λ2a2h2
x −

1

ψ
(Wt + λh(Xt))

−1aλhxG
h
1

+
1

2

1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t

+
1

ψ

�
1 +

1

ψ

�
(Wt + λh(Xt))

−2Wtπtσtρaλhx

− (θ − 1)
1

ψ

�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−2Wtπtσtρa(Xt)

− (θ − 1)
1

ψ

�
1− 1

ψ

�
λ2h2

x(Wt + λh(Xt))
−2a2(Xt)

− (θ − 1)
1

ψ
(Wt + λh(Xt))

−1aλhxG
h
2(X, t)

+ (θ − 1)
�
1− 1

ψ

�
(Wt + λh(Xt))

−1WtπtσtρG
h
1
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+ (θ − 1)
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)G
h
1 + (θ − 1)Gh

2G
h
1

− (θ − 1)
1

ψ

�
1− 1

ψ

�
(Wt + λh(Xt))

−2W2
t π

2
t σ

2
t

− (θ − 1)
1

ψ

�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−2Wtπtσtρa(Xt)

− (θ − 1)
1

ψ
(Wt + λh(Xt))

−1WtπtσtρG
h
2(X, t)

− 1

ψ
(Wt + λh(Xt))

−1WtπtσtρG
h
1

= F2(X,Eh, Gh
2 , t).

Thus, from Equations (3.52) and (3.53), the optimal strategies are given by

c̃∗t = δψ
�
1 +

λh(Xt)

Wt

�
e−

ψ
θ
Y h
t (3.62)

and

π∗
t =

1

γ

1

σ2
t

�
1 +

λh(Xt)

Wt

�
(µt + σtρtZ

h
t )−

λhx

σtWt

ρa(Xt), (3.63)

where (Y h
t , Z

h
t ) solution of the backward differential equation (provided that

it exists)




−dY h
t = F h(X, Y h, Zh, t)dt− ρZh

t dBt − ρ̃Zh
t dB̃t

Y h
T = 0

with

F h(X, Y h, Zh, t)

= −θδ + θ
δψ

ψ
e−

ψ
θ
Y h
t +

1

2
(Zh

t )
2

+ θ
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wt(rt + π∗
tµt − c̃∗t )

− 1

2
θ
�
1− 1

ψ

�
γ(Wt + λh(Xt))

−2W2
t (π

∗
t )

2σ2
t

+ θ
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1b(Xt)

+
1

2
θ
�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

−1a2(Xt)
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− 1

2
θ
�
1− 1

ψ

�
γλ2h2

x(Wt + λh(Xt))
−2a2(Xt)

− θ
�
1− 1

ψ

�
γλhx(Wt + λh(Xt))

−2Wtπ
∗
t σtρa(Xt)

+ θ
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wtπ
∗
t σtρZ

h
t

+ θ
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)Z
h
t .

Hence

(V h)∗(ω − vb,λ)

=
1

1− γ
E
�
θδ

� T

0

(Ws + λh(Xs))
1−γeY

h
s

�
δψ−1e−

ψ
θ
Y h
s − 1

�
ds

+ (WT + λh(XT ))
1−γ

�
. (3.64)

Chapter Summary

This chapter was firstly concerned about proving the sufficient maximum

principle theorem when we assume a concavity property on the Hamiltonian.

With the proof of a sufficient maximum principle assuming we moved on to

solve a consumption-investment problem in two different cases that appeared

in the form of forward-backward stochastic differential equations systems. The

first one considered a traded asset that depends on an observable external

factor while the second one looked at the case where the external factor plays

the role of a non-traded asset. As it is generally convenient, we assumed

that the Brownian motion associated with the non-traded asset is correlated

to the one of the traded asset. We were able to solve each problem using

utility maximisation; finding the exact optimal consumption and investment

strategies followed by the optimal utilities.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

In this chapter, we aim at finding the indifference bid price vb. We

recall that computing that price means, on first hand, solving two stochastic

control problems; the first one assumes that the agent has not taken any

position in the claim whereas the second assumes a buying or selling of the

claim by the investor. We solved in the previous chapter the related two

control problems. On second hand, the indifference bid price is the maximum

amount of money that the agent is willing to pay from his/her initial wealth

to be indifferent, in the sense of expected utility, from buying the claim or

not doing so. That is, it consists of finding the indifference bid price from the

equation (V h)∗(ω − vb,λ) = V ∗(ω, 0). Since a closed formula has not been

obtained, we tackle our problem by a numerical approach making use of the

finite difference method. That is, solving numerically

1

1− γ
E
�
θδ

� T

0

(W∗)1−γ
s eYs

�
δψ−1e−

ψ
θ
Ys − 1

�
ds+ (W∗)1−γ

T

�

=
1

1− γ
E
�
θδ

� T

0

(W∗
s + λh(Xs))

1−γeY
h
s

�
δψ−1e−

ψ
θ
Y h
s − 1

�
ds

+ (W∗
T + λh(XT ))

1−γ
�
. (4.1)

The hedging strategy of the agent is also crucial. But due to the incomplete-

ness of the market, this hedge can not be perfect. This investment strategy

comes from problem 2. We will end up this chapter by the sensitivity analysis

of price with respect to its parameters.

We aim at proving the following

Theorem 8. The indifference bid price vb is the solution of Equation (4.15).

Discretisation

In order to apply a finite difference method, let 0 = t0 < ... < tN =

T be a partition of the interval [0, T ] with time step Δt = tn − tn−1 and
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corresponding increment of the Brownian motion ΔWn = Wn −Wn−1.

Considering the method in Bouchard & Touzi (2004), from the forward-

backward differential equation





dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x

dYt = H(t, Xt, Yt, Zt)dt− ZtdWt, YT = 0

we obtain the following algorithm

ŶN = YT = 0,

Ŷn = En[Ŷn+1] +ΔtEn[H(tn, X̂n, Ŷn, Ẑn)],

ẐN = ZT = 0,

Ẑn =
1

Δt
En[Ŷn+1ΔŴn+1],

with (X̂n, Ŷn, Ẑn, Ŵn)the finite difference approximations of (Xt, Yt, Zt,Wt) at

time t = tn.

Due to the fact that it is numerically demanding, we restrict our nu-

merical computations to a one period model. We assume a one period model

for a problem with time horizon T . That is, we consider only two times

t0 = tN−1 = 0, tN = T and Δt = T .

Discrete Traded Asset

Let us now give a numerical approximation of V (ω, 0) given by Equation

(3.43).

From Equation (3.42) the drift F (X, Y, Z, t) of the process Yt is given by

F (X, Y, Z, t) =
1

2

�
1 +

(1− γ)ρ2

γ

�
Z2

t +
1− γ

γ

µ(Xt)

σ(Xt)
ρZt + θ

δψ

ψ
e−

ψ
θ
Yt

+
1− γ

2γ

µ2(Xt)

σ2(Xt)
+ (1− γ)r(Xt)− θδ. (4.2)
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From the algorithm, we have

Ẑ0 = ẐN−1

=
1

Δt
E
�
ŶNΔŴN

�

=
1

T
E
�
ŶNΔŴN

�

= 0, since ŶN = 0

which means Ẑ0 = 0 and ẐN = 0.

Then

Ŷ0 = E[ŶN ] +ΔtE[F (X̂, Ŷ , Ẑ, 0)]

= TF (X̂, 0, 0, 0)

= T
�
θ
δψ

ψ
e−

ψ
θ
Ŷ0 +

1− γ

2γ

µ2(x)

σ2(x)
+ (1− γ)r(x)− θδ

�
. (4.3)

So, the optimal portfolio, at the initial time, is given by

π∗
0 =

1

γ

1

σ2(x)
(µ(x) + σ(x)ρẐ0)

=
µ(x)

γσ2(x)
, since Z0 = 0. (4.4)

The optimal consumption wealth ratio becomes

�c∗0 = δψe−
ψ
θ
Ŷ0

= δψ exp
�
− ψ

θ
T
�
θ
δψ

ψ
e−

ψ
θ
Ŷ0 +

1− γ

2γ

µ2(x)

σ2(x)
+ (1− γ)r(x)− θδ

��
. (4.5)

Hence

(1− γ)V ∗(ω, 0) = E
�
(W∗

T )
1−γ

�
+ θδE

�
Δt(W∗

0 )
1−γeYT

�
δψ−1e−

ψ
θ
YT − 1

��

= E
�
(W∗

T )
1−γ

�
+ θδTω1−γ

�
δψ−1 − 1

�
.
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Applying the Ito’s formula on the process (W∗
t )

1−γ and considering the initial

condition ω1−γ , we have the system

d(W∗
t )

1−γ = (W∗
t )

1−γ
��

(1− γ)(rt + π∗
tµt − c̃∗t )−

1

2
γ(1− γ)(π∗

t )
2σ2

t

�
dt

+ (1− γ)π∗
t σtρdBt

�

(W∗
0 )

1−γ = ω1−γ .

Integrating both sides from 0 to T and applying the expectation, we obtain

the following equation

E
�
W1−γ

t

�
= ω1−γ + E

� � T

0

(W∗
s )

1−γ
�
(1− γ)(r(Xs) + π∗

sµ(Xs)− c̃∗s)

− 1

2
γ(1− γ)(π∗

s)
2σ2(Xs)

��

= ω1−γ + E
�
Δtω1−γ

�
(1− γ)(r(X0) + π∗

0µ(X0)− c̃∗0)

− 1

2
γ(1− γ)(π∗

0)
2σ2(X0)

��

= ω1−γ
�
1 + T

�
(1− γ)(r(x) + π∗

0µ(x)− c̃∗0)

− 1

2
γ(1− γ)(π∗

0)
2σ2(x)

��
.

Hence,

(1− γ)V ∗(ω, 0)

= ω1−γ
�
1 + T

�
(1− γ)(r(x) + π∗

0µ(x)− c̃∗0)−
1

2
γ(1− γ)(π∗

0)
2σ2(x)

�

+ θδT
�
δψ−1 − 1

��
. (4.6)

Discrete Non-Traded Asset

Now, a numerical approximation of (V h)∗(ω − vb,λ) can be given.

The drift F h(X, Y h, Zh, t) of the process Y h
t is given by

F h(X, Y h, Zh, t)

= −θδ + θ
δψ

ψ
e−

ψ
θ
Y h
t +

1

2
(Zh

t )
2

+ θ
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wt(rt + π∗
tµt − c̃∗t )
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− 1

2
θ
�
1− 1

ψ

�
γ(Wt + λh(Xt))

−2W2
t (π

∗
t )

2σ2
t

+ θ
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1b(Xt)

+
1

2
θ
�
1− 1

ψ

�
λhxx(Wt + λh(Xt))

−1a2(Xt)

− 1

2
θ
�
1− 1

ψ

�
γλ2h2

x(Wt + λh(Xt))
−2a2(Xt)

− θ
�
1− 1

ψ

�
γλhx(Wt + λh(Xt))

−2Wtπ
∗
t σtρa(Xt)

+ θ
�
1− 1

ψ

�
(Wt + λh(Xt))

−1Wtπ
∗
t σtρZ

h
t

+ θ
�
1− 1

ψ

�
λhx(Wt + λh(Xt))

−1a(Xt)Z
h
t .

From the numerical algorithm, we obtain

Ẑh
0 = Ẑh

N−1

=
1

Δt
E
�
Ŷ h
NΔŴN

�

=
1

T
E
�
Ŷ h
NΔŴN

�

= 0, since Ŷ h
N = 0

which means Ẑh
0 = 0 and Ẑh

N = 0.

Then

Ŷ h
0 = E[Ŷ h

T ] +ΔtE[F h(X̂, Ŷ h, Ẑh, T )]

= TF h(X, 0, 0, 0). (4.7)

So, the optimal portfolio, at the initial time, is given by

π∗
0 =

1

γ

1

σ2(X0)

�
1 +

λh(X0)

W0

�
(µ(X0) + σ(X0)ρẐ

h
0 )

− λhx

σ(X0)W0

ρa(X0)

=
1

γ

µ(x)

σ2(x)

�
1 +

λh(x)

ω − vb

�
− λhx

σ(x)(ω − vb)
ρa(x), since Ẑh

0 = 0. (4.8)
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The optimal consumption wealth ratio becomes

�c∗0 = δψ
�
1 +

λh(X0)

W0

�
e−

ψ
θ
Ŷ h
0

= δψ
�
1 +

λh(x)

ω − vb

�
e−

ψ
θ
TFh(x,0,0,0), (4.9)

where

F h(X̂, 0, 0, 0)

= −θδ + θ
δψ

ψ
e−

ψ
θ
Y h
0

− 1

2
θ
�
1− 1

ψ

�
γ(W∗

0 + λh(X0))
−2(W∗

0 )
2(π∗

0)
2σ2

0

+ θ
�
1− 1

ψ

�
(W∗

0 + λh(X0))
−1W∗

0 (r0 + π∗
0µ0 − c̃∗0)

+ θ
�
1− 1

ψ

�
λhx(W∗

0 + λh(X0))
−1b(X0)

+
1

2
θ
�
1− 1

ψ

�
λhxx(W∗

0 + λh(X0))
−1a2(X0)

− 1

2
θ
�
1− 1

ψ

�
γλ2h2

x(W∗
0 + λh(X0))

−2a2(X0)

− θ
�
1− 1

ψ

�
γλhx(W∗

0 + λh(X0))
−2W∗

0π
∗
0σ0ρa(X0). (4.10)

We can now move on to give the approximation of (1 − γ)(V h)∗(ω − vb,λ).

We then obtain

(1− γ)(V h)∗(ω − vb,λ)

= E
�
(W∗

T + λh(XT ))
1−γ

�

+ θδE
�
Δt(W∗

0 + λh(X0))
1−γeY

h
T

�
δψ−1e−

ψ
θ
Y h
T − 1

��

= E
�
(W∗

T + λh(XT ))
1−γ

�

+ θδE
�
T (ω − vb + λh(X0))

1−γ
�
δψ−1 − 1

��

= E
�
(W∗

T + λh(XT ))
1−γ

�
+ θδT (ω − vb + λh(x))1−γ

�
δψ−1 − 1

�
. (4.11)
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From Itô’s formula, we obtain

d(Wt + λh(Xt))
1−γ

=
��

1− γ
�
(Wt + λh(Xt))

−γWt(rt + πtµt − c̃t)

− 1

2
γ
�
1− γ

�
(Wt + λh(Xt))

−1−γW2
t π

2
t σ

2
t

+
�
1− γ

�
λhx(Wt + λh(Xt))

−γb(Xt)

+
1

2

�
1− γ

�
λhxx(Wt + λh(Xt))

−γa2(Xt)

− 1

2
γ
�
1− γ

�
λ2h2

x(Wt + λh(Xt))
−1−γa2(Xt)

− γ
�
1− γ

�
λhx(Wt + λh(Xt))

−1−γρa(Xt)Wtπtσt

�
dt

+
��

1− γ
�
(Wt + λh(Xt))

−γWtπtσt

+
�
1− γ

�
λhx(Wt + λh(Xt))

−γρa(Xt)
�
dBt

+
��

1− γ
�
λhx(Wt + λh(Xt))

−γ ρ̃a(Xt)
�
dB̃t.

Integrating both sides from 0 to T , and applying the expectation we end up

getting

E
�
((Wh

T )
∗ + λh(XT ))

1−γ
�

= (ω − vb + λh(X0))
1−γ

T
�
(1− γ)λhx(ω − vb + λh(X0))

−γb(X0)

− 1

2
γ(1− γ)(ω − vb + λh(X0))

−1−γ(ω − vb)2(π∗
0)

2σ2(X0)

+ (1− γ)(ω − vb + λh(X0))
1−γ(ω − vb)(r(X0) + π∗

0µ(X0)− c̃∗0)

+
1

2
(1− γ)λhxx(X0)(ω − vb + λh(X0))

−γa2(X0)

− 1

2
γ(1− γ)λ2h2

x(ω − vb + λh(X0))
−1−γa2(X0)

− γ(1− γ)λhx(ω − vb + λh(X0))
−1−γ(ω − vb)ρa(X0)π

∗
0σ(X0)

�
.
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Hence,

(1− γ)(V h)∗(ω − vb,λ)

= (ω − vb + λh(X0))
1−γ

T
�
(1− γ)(ω − vb + λh(X0))

1−γ(ω − vb)(r(X0) + π∗
0µ(X0)− c̃∗0)

− 1

2
γ(1− γ)(ω − vb + λh(X0))

−1−γ(ω − vb)2(π∗
0)

2σ2(X0)

+ (1− γ)λhx(ω − vb + λh(X0))
−γb(X0)

+
1

2
(1− γ)λhxx(X0)(ω − vb + λh(X0))

−γa2(X0)

− 1

2
γ(1− γ)λ2h2

x(ω − vb + λh(X0))
−1−γa2(X0)

− γ(1− γ)λhx(ω − vb + λh(X0))
−1−γ(ω − vb)ρa(X0)π

∗
0σ(X0)

�

+ θδT (ω − vb + λh(X0))
1−γ

�
δψ−1 − 1

�
. (4.12)

Factoring by (ω − vb + λh(X0))
1−γ , we obtain

(1− γ)(V h)∗(ω − vb,λ)

= (ω − vb + λh(X0))
1−γ

�
1+

T
�
(1− γ)(ω − vb)(r(X0) + π∗

0µ(X0)− c̃∗0)

− 1

2
γ(1− γ)(ω − vb + λh(X0))

−2(ω − vb)2(π∗
0)

2σ2(X0)

+ (1− γ)λhx(ω − vb + λh(X0))
−1b(X0)

+
1

2
(1− γ)λhxx(X0)(ω − vb + λh(X0))

−1a2(X0)

− 1

2
γ(1− γ)λ2h2

x(ω − vb + λh(X0))
−2a2(X0)

− γ(1− γ)λhx(ω − vb + λh(X0))
−2(ω − vb)ρa(X0)π

∗
0σ(X0)

+ θδ
�
δψ−1 − 1

���
. (4.13)

Making the change of variables q = ω − vb + λh(X0) and m = θδ(δψ−1 − 1),

we obtain from (V h)∗(ω − vb,λ) = V ∗(ω, 0) the following equation
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q1−γ
�
1 + T

�
(1− γ)(q − λh(x))(r(x) + π∗

0µ(x)− c̃∗0)

− 1

2
γ(1− γ)q−2(q − λh(x))2(π∗

0)
2σ2(x) + (1− γ)λhxq

−1b(x)

+
1

2
(1− γ)λhxxq

−1a2(x)− 1

2
γ(1− γ)λ2h2

xq
−2a2(x)

− γ(1− γ)λhxq
−2(q − λh(x))ρa(x)π∗

0σ(x) + θδ
�
δψ−1 − 1

���

− ω1−γ
�
1 + T

�
(1− γ)(r(x) + π∗

0µ(x)− c̃∗0)

− 1

2
γ(1− γ)(π∗

0)
2σ2(x) +m

��
= 0. (4.14)

Substituting c̃∗0 by its numerical approximation in Equation (4.9) into the

previous equation, we get

q1−γ
�
1 + T

�
(1− γ)(q − λh(x))

�
r(x) + π∗

0µ(x)

− δψ
�
1 +

λh(x)

q − λh(x)

�
e−

ψ
θ
TFh(x,0,0,0)

�

− 1

2
γ(1− γ)q−2(q − λh(x))2(π∗

0)
2σ2(x) + (1− γ)λhxq

−1b(x)

+
1

2
(1− γ)λhxxq

−1a2(x)− 1

2
γ(1− γ)λ2h2

xq
−2a2(x)

− γ(1− γ)λhxq
−2(q − λh(x))ρa(x)π∗

0σ(x) + θδ
�
δψ−1 − 1

���

− ω1−γ
�
1 + T

�
(1− γ)(r(x) + π∗

0µ(x)− δψe−
ψ
θ
TF (x,0,0,0))

− 1

2
γ(1− γ)(π∗

0)
2σ2(x) +m

��
= 0, (4.15)

where

F (x, 0, 0, 0) = θ
δψ

ψ
e−

ψ
θ
Y0 +

1− γ

2γ

µ2(x)

σ2(x)
+ (1− γ)r(x)− θδ, (4.16)

F h(x, 0, 0, 0)

= −θδ + θ
δψ

ψ
e−

ψ
θ
Y h
0 − 1

2
θ
�
1− 1

ψ

�
γq−2(q − λh(x))2(π∗

0)
2σ2

0

+ θ
�
1− 1

ψ

�
q−1(q − λh(x))

�
r0 + π∗

0µ0 − δψ
�
1 +

λh(x)

ω

�
e−

ψ
θ
Y h
0

�

+ θ
�
1− 1

ψ

�
λhxq

−1b(x) +
1

2
θ
�
1− 1

ψ

�
λhxxq

−1a2(x)

− θ
�
1− 1

ψ

�
γλhxq

−2(q − λh(x))π∗
0σ0ρa(x)−

1

2
θ
�
1− 1

ψ

�
γλ2h2

xq
−2a2(x).

(4.17)
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Discussion

In this section, we perform some sensitivity analysis of the optimal in-

vestment and the indifference bid price with respect to the parameters. We

will like to know the effect of the change of a parameters on those values.

Sensitivity of the Investment to the Correlation Coefficient

Here we assume that Xt is a geometric Brownian motion given by

dXt = bXtdt+ ρaXtdBt + ρ̃aXtdB̃t.

We consider the following parameter values: b = 1.0, a = 0.3, r = 0.0014,

σ = 0.24, λ = 0.5, x = 1.0, γ = 0.5, T = 1, ω = 5.0, ψ = 0.3, δ = 0.0052.

Figure 1 shows the investment strategy as a function of ρ. The negative

value of the optimal investment suggests short selling. We observe that the

investment (πh)∗ is always less than the one with zero claim (π∗ = −34.72).

This choice of parameters tells that the agent holds less of the asset than the

zero claim investment, and this decreases with correlation.

Figure 1: Change of the optimal investment with respect to the correlation
coefficient ρ: 0.0 ≤ ρ ≤ 1.0.

Sensitivity of the Investment to the Initial Wealth

We consider the following parameter values: b = 1.0, a = 0.3, r =

0.0014, σ = 0.24, λ = 0.5, x = 1.0, γ = 0.5, T = 1, ρ = 0.5, ψ = 0.3, δ =

0.0052.
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Figure 2 depicts the change of the optimal investment with respect to the

initial value of the wealth. The negative value of the optimal investment

suggests short selling and as initial wealth increases the optimal number of

assets also increases.

Figure 2: Change of the optimal investment(πh)∗ with respect to the initial
wealth ω: 2.0 ≤ ω ≤ 20.0.

Sensitivity of the Price to the Correlation Coefficient

We consider the following parameter values: b = 1.0, a = 0.3, r =

0.0014, σ = 0.24, λ = 0.5, x = 1.0, γ = 0.5, T = 1, ω = 5.0, ψ = 0.3, δ =

0.0052.

Figure 3 shows that the indifference bid price vb increases with the correlation.

Figure 3: Change of the price vb with respect to the correlation coefficient ρ:
0.5 ≤ ρ ≤ 1.0.
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Sensitivity of the Price to the Risk Aversion

We consider the following parameter values: b = 1.0, a = 0.3, r =

0.0014, σ = 0.24, λ = 0.5, x = 1.0, T = 1, ω = 5.0, ψ = 0.3, δ = 0.0052.

Figure 4 shows that the bid price vb decreases as the risk aversion γ increases.

Figure 4: Change of the price vb with respect to the risk aversion γ:
0.02 ≤ γ ≤ 0.75.

Sensitivity of the Price to the Initial Wealth

We consider the following parameter values: b = 1.0, a = 0.3, r =

0.0014, σ = 0.24, λ = 0.5, x = 1.0, T = 1, ω = 5.0, ψ = 0.3, δ = 0.0052.

Figure 5 shows the indifference bid price vb for different values the risk aver-

sion γ equal to 0.05, 0.25 and 0.5. The graph shows that agents with huge

amounts of initial wealth and different perception on the risk market are likely

to pay the same price to purchase the claim. That is, all the bid price for dif-

ferent value of the risk aversion tend to follow the same path with the increase

of the initial wealth.
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Figure 5: Change of the price vb with respect to the initial wealth for
different values of the risk aversion γ.

Chapter Summary

In this chapter, we used the finite difference method to first estimate the

investment when an agent goes for a claim and then estimate the indifference

price. In each case we examined their dependency to some of the parameters.

In the first case, we observed that when fixing all the other parameters and

making the correlation between traded and non-traded assets vary, the invest-

ment in presence of claim is always less than the no claim hedge. However,

when the initial wealth increases this new investment increases so as to start

being bigger than the no claim hedge.

For the dependency of the indifference price to the correlation between

the two assets, we observed that the more the traded asset is correlated to the

non-traded the more the agent is willing to pay for the risk. We also observe

that as risk aversion increases so the indifference price falls. For the parame-

ters specification that we chose our model does not fit the case where the risk

aversion is between 0.75 and 1. We then move on to study the indifference

price as function of the initial wealth of the agent for different values of the

risk aversion 0.05, 0.1, 0.25 and 0.5. We obtained for a huge amount of initial

wealth the price that an agent is willing to pay is less influenced by the risk

aversion.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

Utility indifference pricing has attracted a lot of interests in mathe-

matical finance and actuarial sciences as a concept of valuation of claims in

incomplete market situation and has a number of applications as in option

pricing with transaction costs and in portfolio constraints’ context. Now con-

sider the problem of an agent who faces receiving a claim on a risky asset on

which trading is not possible. The question is: ”How best to price and hedge

this claim in this incomplete market?” Using maximum principle method, we

solved this problem by the use of the utility indifference pricing concept. We

incorporated into our model an observable external factor (factor model) and

considered Epstein-Zin utility. To the best of our knowledge this is the first

time such a problem is studied. In this chapter we summarise and conclude

the work done in this thesis.

Summary

To compute utility indifference price of a claim, two stochastic control

problems must be solved. In this thesis these problems were given in the form

of forward-backward stochastic systems. We solved it with the use of the

sufficient maximum principle for forward-backward system. That allowed us

to find the optimal consumption and investment strategies and then a relation

given the indifference price. As it is common in indifference pricing problem,

a closed form formula for the indifference price was not found. So a numerical

approach (one period finite difference method) was performed.

The first question we asked ourselves was: ”Is there any influence of

the claim on the hedging strategy?” The answer is that an agent holds less of

the asset than in the zero claim strategy without any regard of the correlation

between traded and non-traded assets (related to the parameters specifications

we took).
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Then, we wanted to compare again these two investment strategies for

different value of the initial wealth. This study showed that the investment

strategy is an increasing function of the initial wealth of the agent so as to be

higher than its value in the zero claim case.

Our next question was: ”What effect has the changes in parameter values

have on the indifference price?” Our first study brought us to the conclusion

that the higher the correlation coefficient, the higher the indifference price.

Secondly, we obtained that an agent is willing to pay less for the non-traded

asset as he/she becomes less tolerant of risk (for increasing risk aversion).

Finally, we noticed that for large investors there is an indifference on the risk

for them to decide which amount they are willing to pay.

Conclusion

A utility indifference pricing problem was solved using maximum princi-

ple for a model considering observable factor model under Epstein-Zin utility.

Surprisingly, we found that an agent is going to spend a big proportion (be-

tween 46% and 87%) of his/her initial wealth in order to hedge the claim.

However, our model confirmed the common sense that ”an agent is willing

to pay less for the non-traded as he/she becomes less tolerant of risk.” These

findings can be explained by the fact that we are considering a more realistic

model.

Recommendations

In this thesis we considered a linear payoff λXT . This assumption has

greatly simplified some of the analysis. A natural consideration would be

option payoffs such as call/put options defined by λ(K − XT )
+, where K is

a price of the stock fixed at initial time (strike price). Also, we assumed that

the factor model is observed even though in reality it is not always the case.

These are left for further research.
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