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ABSTRACT 

In this work, we built a graph-theoretic model of the haemoglobin protein domain 

and subsequently examine the impact of single point mutations in the entire protein 

domain to ascertain how significantly the severe and mild mutations are from the 

wildtype mutation. We computed graph centralities measures and examined the 

impact of single point mutations in the β-chain of the haemoglobin by comparing 

the wildtype structure with six most common mutations in the domain. We 

visualized the impact of the virtual single point mutations by use of dendrogram. 

Our results showed that the severe mutation (E6V) is significantly different from 

the wild and mild mutations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



iv 
 

KEY WORDS 

Change in Glutamic acid at position 6 to Valine (E6V) 

Graph-theoretic modeling  

Haemoglobin protein domain 

Hierarchical Clustering 

Sickle Cell Disease  

Single point mutation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



v 
 

ACKNOWLEDGEMENTS 

I am most grateful to the Almighty God for His gift of life in every 

circumstance. Secondly, I wish to extend my profound gratitude to my Supervisor 

and mentor Dr. Samuel M. Naandam for his continuous support and supervision in 

the course of writing this thesis. He really served as an inspiration to me. I also 

would love to extend my heart felt gratitude to Prof. Debrah Knisley and Dr. 

Samuel Kakraba whose contributions in diverse ways ensured a successful 

completion of this thesis. God richly bless you. 

Additionally, I would love to say an endless thanks to my sisters Winifred 

Serwah, Justine Dziedzorm and Judith Makafui for their massive support and 

prayers. Finally, I am grateful to the entire Netsey family and my course-mates for 

their love and encouragement through this academic journey. God Bless you all.  

 

 

 

 

 

 

 

 

 

 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



vi 
 

DEDICATION 

To my parent: Stephen Brown Netsey and Celestine Dedzidi Dede Ameku. 

 

 

 

 

  

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



vii 
 

TABLE OF CONTENTS 

Page 

DECLARATION ii 

ABSTRACT iii 

KEY WORDS iv 

ACKNOWLEDGEMENTS v 

DEDICATION vi 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF ABBREVIATIONS xiii 

CHAPTER ONE: INTRODUCTION  

Background to the Study 1 

Protein Structure 4 

Protein Structure Related to Functions 5 

Mutations: Causes and Effects 7 

Sickle Cell Disease and Sickle Cell Anaemia 8 

Hemoglobin Disorders Causing Sickle Cell Diseases 10 

Characterization of Protein Functions by Graph-Theoretic Modeling 10 

Statement of Problem 11 

Significance of the study 12 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



viii 
 

Research Objectives 12 

Delimitation 13 

Definitions of Terms 13 

Chapter Summary 15 

CHAPTER TWO: LITERATURE REVIEW  

Introduction 16 

Modeling of Proteins by Graph-Theoretic Approach 16 

Protein molecule(s) Interaction Networks 18 

Protein Binding Domain 21 

Stability of Protein Molecule(s) Interaction Networks 23 

Applications of Graph-Theoretic Modeling 24 

Chapter Summary 25 

CHAPTER THREE: RESEARCH METHODS  

Graph Invariants as Measure of Molecular Properties 27 

Structural Visualization 28 

Interactions and Residue Network Creation 29 

Weighted Graph 29 

Adjacency Matrix 31 

Centrality Measures 32 

Nested Graph-Theoretic Model of Haemoglobin Protein Domain 34 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ix 
 

Sequence Partition 35 

Residue Interaction Graphs In Cytoscape 38 

Weighted Edge Model 39 

Nested Graph-Theoretic Model of Haemoglobin Protein Domain 41 

CHAPTER FOUR: RESULTS AND DISCUSSION  

Visualizing Effect of Single Point Mutations on the Haemoglobin Domain 43 

Impact of Displaced Mass on Mutation along Interacting Edges 43 

Impact of a Single Point Mutation in the β-Chain of Haemoglobin “A” 50 

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMENDATIONS  

Overview 53 

Summary 53 

Conclusions 54 

Recommendations 54 

REFERENCES 56 

APPENDIXES 

APPENDIX A: WEIGHTED MOLECULAR DESCRIPTORS OF SSG 60 

APPENDIX B: CENTRALITY MEASURES OF UN-WEIGHTED TLG 62 

APPENDIX C: SUBSEQUENCE AND MUTANT-DOMAIN GRAPHS 63 

APPENDIX D: SUBSEQUENCE AND MUTANT-DOMAIN GRAPHS 64 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



x 
 

LIST OF TABLES 

          Page 

1. Subsequence Partition of 1A3N 36 

2. Vertex Composition and Molecular Weights of Top Level Graph 45 

3. Edge Weights in kg per average degree of interaction in Top Level Graph 46 

4. Weighted Molecular Centrality Measures of Mutation Top Level Graph 48 

 

 

 

 

 

  

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



xi 
 

LIST OF FIGURES 

          Page 

1. Amino acid structure and 3 R-groups linked by peptide bonds 5 

2. Amino acids; Peptide; Protein 5 

3. Protein structural hierarchy 7 

4. Euler’s Konigsberg’s Problem 17 

5. Hierarchical graph for NBD2  (Kakraba & Knisley, 2016) 23 

6. A Screenshot of a guilt by association graph (Jensen, 2020) 25 

7. Sequence view of 1A3N in pdb (Tame & Vallone, 1998) 28 

8. A Sample Graph, G = (E, V) 30 

9. 1A3N Sequences Visualized in Chimera 35 

10. β-Chain Sequence Network Layout of 1A3N in Cytoscape 37 

11. Original orientation of two sample sub-graphs in Cytoscape 37 

12. Compressed β-Chain Haemoglobin Binding Domain 38 

13. Displaced Weight based on momentum along edge Ri–Rj 40 

14. A Hierarchical Graph of β-Chain Haemoglobin Binding Domain 42 

15. Subdomain S1 and its corresponding mutant domain E6V graph 44 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



xii 
 

16. Single point mutations in the haemoglobin protein 51 

 

  

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



xiii 
 

LIST OF ABBREVIATIONS 

SCD   Sickle Cell Diseases 

SSG   Sub-Sequence Graph 

TLG   Top Level Graph 

TLGMCM  Top Level Graph Molecular Centrality Measures 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



1 
 

CHAPTER ONE 

INTRODUCTION 

Background to the Study 

It is trivially viewed that nothing exist in isolation-the impression that 

everything in existence, either physically or chemically one way or the other are in 

association with other physical or chemical elements. In graph theory, links 

between different physical and chemical compositions (or nodes) are studied where 

properties such as immediacy, domination number, weights of distinct and 

compounding nodes among others are analysed to model any change in the natural 

existing states of molecules (Ni, Sugimoto, & Jiang, 2011). Like nodes in a graph 

that often estimates local effects within a graph network, edges on the other hand 

most likely estimates global effects of a graph. Proteins are made of network of 

non-covalently linked amino acid side chains (Steward, 2019). In a protein network, 

there are therefore carbon, nitrogen, hydrogen, as well as oxygen atoms present 

which interacts within its network or with other protein(s) base on their chemical 

composition and properties. Today, there are variable graph network analysis and 

visualization algorithms with distinctive properties for studying graph networks to 

access the impact of vital components. 

Sickle Cell Disease is one of the most prevalent inherited disease causing a 

very high fatality rate especially among newborns every year. This disease is caused 

by a single point mutation in the amino acid sequence of the haemoglobin protein 

domain (Asare et al., 2018). The haemoglobin in the red blood cells is an oxygen 
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transporter molecule in ensuring oxygen is transported to tissues and organs in the 

human body (Berg, Tymoczko, & Stryer, 2002). Only a handful of scholarly work 

exist on use of graph-theoretic approach in examining the effect of a point 

mutations on protein sequences. No literature exist on application of graph-

theoretic modeling for examining the impact of single point mutations especially in 

the β-chain domain of the haemoglobin protein where sickle cell disease emanates. 

We used two major network analysis tools in this work, namely Cytoscape 

and UCFS Chimera for visualysing and analysing the de-oxy hemoglobin protein.  

In a protein graph network, there are interaction between neighboring proteins to 

perform specific function within an organism. According to Brinda & 

Vishveshwara (2005) each amino acid in a protein structure is a node, and the 

strength of the non-covalent interactions between two amino acids is evaluated for 

edge determination. 

Modeling in this thesis is done to determine the impact of likely changes in 

the states of a protein molecule due to a single point mutation of hemoglobin 

protein. According to Berg et al. (2002), hemoglobin (found in red blood cells) is a 

protein that functions as an oxygen transport molecule necessary for life processes 

in living organisms. A change in the amino acid sequence of the hemoglobin protein 

caused by a single point mutation in the amino acid sequence resulted in variety of 

hemoglobin disorder called Sickle Cell Diseases (SCD). In this research, we use 

graph-theoretic modeling to build a hierarchical graph for the human hemoglobin 

and used the nested graph to examine the impact of single point mutation that 

results in Sickle Cell Diseases. 
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In graph theory, we study and describe pairwise relationships between 

objects. Graph-theoretic modeling seeks to understand relationships in complex 

networks like system network biology, chemical interaction among others. 

Chimera provided 3D coordinate data of amino acid residues as nodes for 

generating interactions at specific distance range in Cytoscape in order to create a 

network of the residues where interactions were based of adjacency and distance 

measure of at most 6 angstoms between residues and also between compounding 

residues or peptide. Sub-units of a specific sequence of the hemoglobin protein 

were compressed into a single unit to obtain a top level graph which forms the basis 

for our domain modeling (Kakraba & Knisley, 2016). 

The definition of a graph in our context here differs completely from the 

functional way of defining a graph: we have a graph here as a set containing subsets 

called Vertex set (V) or nodes and edge set (E) or loops. The Vertexes or nodes are 

objects and the edges or loops interactions. Every day, different kinds of graphs are 

used for different purposes however, the purposes for employing graphs is the same 

across a wide variety of research disciplines; that is to establish relationships among 

different objects. We could decide to find the shortest distance moving from “town 

A”-to-“town B” (two-distinct places) which will require travelling through a 

number of other cities (nodes) from A through to B in order to either optimize 

profits or reduce stress by passing through a comfortable route. In that way we will 

be able to choose the best route base on the goal we intend to achieve. 

Just as in graphs, proteins are complex molecules that exist in giant networks acting 

to build the structural elements of an organism thereby providing energy necessary 
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for life processes. These complex proteins constitute highly sophisticated, fine-

tuned molecular pumps that efficiently couple various sources of energy in the cell 

to transport a wide range of molecules across the membrane, often against their 

chemical gradient (Tajkhorshid, 2010). 

Intentionally, graphing the hemoglobin protein domain will help us to 

identify the specific subdomain of the entire amino acid sequence where the single 

point mutation result in the SCD leading to severe health complications in some 

cases of the mutations. 

Protein Structure 

Amino acids are the building block of proteins (Steward, 2019). They carry 

the information necessary for protein synthesis. They can thus be considered as the 

‘blueprints’ that contain the design of the living organism. According to Blanco & 

Blanco (2017) proteins are large size molecules (macro-molecules), polymers of 

structural units called amino acids. From organic Chemistry point of view, amino 

acids are organic compounds composing of amine (-NH2 ) and Carboxyl (-COOH) 

functional groups along with a side chain (R group) that is specific for each amino 

acid; they differ from each other in their side chain R groups. We obtained the 

amino acid sequence of normal human hemoglobin which has the same sequence 

as 1A3N gene in the protein data bank (PDB); thus we generate our subdomain 

graphs with the 1A3N pdb data. The secondary structure of human hemoglobin 

revealed the existence helixes and coils which helped us in partitioning the full 

length of the normal hemoglobin of homo sapiens into subsequence. In partitioning 

the protein sequence according to Knisley et al. (2013) , each subsequence might 
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contain one and only one type of secondary structure, either a beta strand, an alpha 

helix, or a loop. The loop regions may contain turns, a 
3

10
-helix or an alpha helix 

with no more than 6 residues (Knisley et al., 2013). 

 

Figure 1: Amino acid structure and 3 R-groups linked by peptide bonds  

  

Figure 2: Amino acids; Peptide; Protein 

 

Protein Structure Related to Functions 

Several function of proteins exist. Proteins may function in various ways in 

transporting, storing other molecules like oxygen, providing mechanical support, 

movement, nerve impulse transmission, growth control and cell differentiation 
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(Berg et al., 2002).  Different proteins perform specific functions based on how 

they fold in their secondary structure to prevent infections. 

Illustratively, protein folding and maintenance is critical to protein 

functions: Misfolded uncorrected protein are seen in elevated levels in protein 

aggregates in Alzheimer’s Parkinson’s diseases among other new generative 

diseases (Kakraba et al., 2019). Distinct protein thus perform specific functions 

which in summary are characterized by how the protein folds in the secondary 

structure form. As expected, any defect in the functions of a protein will have some 

consequences in the organism. Although such defects are usually sufficient to cause 

harm or death in some cases to the organism, inadequate function of membrane 

transporters also constitutes the molecular basis of a wide range of serious human 

diseases, such as cystic fibrosis, familial intrahepatic cholestasis. 

Amino acids in the primary structure are arranged sequentially in the 

polypeptide chain held together by peptide bonds during the process of 

biosynthesis. Here, the structure starts from the amino-terminal (N) to the carboxyl 

terminal (C). The primary structure of each protein is unique, due to both the 

different order and arrangement of the amino acids in the polypeptide and the total 

number of amino acids constituting the protein molecule (Kakraba, 2015). In the 

secondary structure, there exists highly regular local sub-structures on the actual 

polypeptide backbone chain defined by patterns of hydrogen bonds between the 

main-chain peptide groups. The α-helix and the β-strand (or β-sheets) are the two 

main types of secondary structure resulting from the folding of the polypeptide 

chain, which shows the character of the secondary structure of a specific protein. 
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Sometimes, the protein does not fold to show the existence of either α-helix or β-

strand at a given iterated level and so gives a random coil structure in the secondary 

structural level. For the tertiary structures, proteins are visualized in three-

dimensional structural view of monomeric and multimeric protein molecules by 

complete folding of the sheets and helices into a compact globular structure. The 

tertiary structure is held in position by hydrophobic and hydrophilic interactions. 

See Figure 3 for clarification. 

 

 

Figure 3: Protein structural hierarchy 

 

Mutations: Causes and Effects 

A single point mutation refers to a change of a single amino acid in the 

amino acid sequence of a protein resulting in the abnormal functioning of the 

protein. Single point mutations can result from addition, deletion, insertion of an 

amino acid. 

Mutations might result in permanent damage to the genetic sequence or 

have a mild effect on the sequence (Kakraba, 2015). Kakraba and Knisley (2016) 
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used a hierarchical graph modeling for examining the single point mutation effect 

on nucleotide binding domain 2 for cystic fibrosis transmembrane regulator. 

However, no literature exists on the use of nested graphs (in graph-theoretic 

modeling) in studying the effect of single point mutations on the hemoglobin 

domain, a motivation for this work. In this thesis, we present a mathematical model 

for haemoglobin of homo-sapiens, and use it to study how the domain of the red 

blood cell’s defects causes sickle cell diseases as a result of mutation. 

 

Sickle Cell Disease and Sickle Cell Anaemia  

With the rising population in hemoglobin disorders among newborns 

globally, it is rarely possible for health practitioners today to have a perfect cure to 

satisfy the need of their patients. Sickle cell disease (SCD) is a hemoglobin disorder 

which occurs as a result of mutation in the DNA sequence of the hemoglobin 

protein. Cellular organisms use messenger RNA to convey genetic information 

where some RNA acts in catalyzing biological reactions, controlling gene 

expression, and communicating responses to cellular signals (Berg et al., 2002). 

The process uses transfer RNA molecules to deliver amino acids to the 

ribosome, where ribosomal RNA then links amino acids together to form coded 

proteins. A rapid and timely transfer of genetic information and important elements 

is thus necessary in ensuring every cell and tissue gets their fair share of resources 

necessary in maintaining the growth and the normal functionality of the human 

body. The inability of the hemoglobin to function properly resulting in the sickle 

cell disease thus depends on how connected the subdomains of the amino residues 
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are since a better connected domain will ensure a better transfer of functional and 

genetic information in the human body (Berg et al., 2002). 

This mutation in the β-chain hemoglobin prevents the normal functioning 

of the hemoglobin as an oxygen transport molecule in the red blood cell. Several 

thousands of different proteins exist with each having its own particular amino acid 

sequence. The amino acid sequence of normal Haemoglobin “A” chain-B has 146 

residues where a point mutation occurs each at a time resulting in the sickle cell 

disease with the most common and severe type in the β-chain (or chain-B) where 

Glutamic Acid (Glu or E) get substituted by a Valine (Val or V) at position 6 (E6V) 

producing Hemoglobin S in effect. The disease caused by this unique mutation as 

a result of replacement of glutamic acid with valine at position 6 (E6V) is called 

sickle cell anaemia. 

In adults, normal hemoglobin structure (1A3N) has in total 4 chains. In the 

globin, mutation resulting in sickle cell disease occurs once the amino acid now 

available in the mutant protein no longer folds properly to enhance the functionality 

of the red blood cells. Thus, patients tend to have diverse health complications due 

to the abnormal protein resulting from the mutation. According Weatherall et al., 

(2006), the inherited hemoglobin disorders are characterized by an extremely 

diverse series of clinical syndromes of varying severity. Currently only a few 

people are able to afford a bone marrow transplant due to the treatment cost 

involved. Effective treatments however are available which can reduce symptoms 

and prolong life of patients. However, the diseases’ severity varies depending on 

the distinctive phenotype one has. 
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Hemoglobin Disorders Causing Sickle Cell Diseases 

Hemoglobin is the pigment in the red blood cells that transfers oxygen to 

the tissues during human development (Weatherall et al., (2006). Hemoglobin 

disorders may be inherited in which case the structural hemoglobin variants and the 

thalassemias being the two groups of inherited hemoglobin disorders come from 

defective globin production following a recessive form of inheritance. By 

inference, if two carriers marry, there is a 
4
1  probability that any of their child will 

bear a defective genes from each parent, they are homozygous for the particular 

sickle cell disorder. 

Among the several structural hemoglobin variants which may alter the 

function of the hemoglobin, only three (HbS, HbC, and HbE) are widespread. The 

homozygous state for the sickle cell gene results in sickle cell anemia, whereas the 

compound heterozygous state for the sickle cell and HbC genes results in HbSC 

disease (Weatherall et al., 2006). HbSC disease is milder but it also has important 

health implications.  

 

Characterization of Protein Functions by Graph-Theoretic Modeling 

A model is a scientific algorithm which is developed or under development 

purposely to study a problem for solution. Since proteins are made of amino acid 

residues linked together in a graph, there are interactions between these protein 

molecules based on their chemical composition and properties. 
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In modeling our binding domain, we partitioned the β-chain of the normal 

hemoglobin (particularly of adults) based on their secondary structures and 

determine their local effects by dominating sets (and thus dominating numbers) 

where possible. Unlike Kakraba & Knisley (2016) who used connectivity measures 

between residues at interacting distances of 8 angstom, we however considered a 

more interactive connectivity measure of at most 6 angstoms between residues as 

well as for hydrogen bonding. There is often likely interaction between 

neighbouring proteins to perform specific or related function within an organism. 

Graph-theoretic model thus gives enough understanding on protein structure and 

protein-protein interaction network. Other graph invariants for the purpose of our 

study were also computed and explained.  

In this research, we used graph-theoretic modeling to build a hierarchical 

graph for the human hemoglobin binding domain to examine the global of virtual 

single point mutations causing sickle cell disease on the haemoglobin protein 

domain. 

Statement of Problem 

According to the World Health Organization (2006), 7% of the world’s 

population is a carrier for haemoglobin disorders, and between 300,000 and 

500,000 infants with the severe, heterozygous form of these diseases are born each 

year. In Ghana, approximately 15000 (2%) of Ghanaian newborns are diagnosed 

with SCD annually (Asare et al., 2018). The disease is caused by a single point 

mutation in the amino acid sequence of the haemoglobin protein. Kakraba & 

Knisley (2016) used graph-theoretic modeling to study the effect of single point 
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mutations in the nucleotide binding domain 2 (NBD2) of the cystic fibrosis 

transmembrane conductance regulator. This follow-up work uses molecular 

descriptors from previous work by Kakraba & Knisley (2016) and analogous 

method to study the effect of the single point mutation in the haemoglobin domain. 

Like previous works, we build hierarchical graph for the haemoglobin protein 

domain and use graph invariants and graph centralities to examine the effect of 

virtual single point mutation on the protein domain. 

Significance of the study 

This research is significant in the sense that we obtain a deeper insight into 

how some popular phenotypes of the sickle cell diseases are ranked in order of 

severity by a dendrogram clustering of mutations in the β-chain haemoglobin 

protein domain. In this study, we build a nested graph for the haemoglobin protein 

domain and used it to study the virtual effects of single point mutations on the 

protein domain. This adds to the body of knowledge on application of graph-

theoretic modeling to the study of diseases. 

Research Objectives 

This thesis seeks; 

1. To develop a graph-theoretic model for haemoglobin protein domain that 

can adequately study sickle cell diseases. 

2. To access the impact of single point mutations in the hemoglobin domain. 

3. To determine the severity of distinctive phenotypes of the SCD mutation in 

the haemoglobin domain. 
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Delimitation 

Different protein perform distinctive specific functions as their respective 

alignment of amino acid sequence in each protein varies. Knisley et al., (2013) built 

a nested graph and used it to study the effect of single point mutations in the 

nucleotide binding domain1 causing cystic fibrosis. Likewise, with improved 

molecular descriptors of 20 most essential amino acids in studying a single point 

mutation. Kakraba (2015), Kakraba & Knisley (2016) built the hierarchical graph 

for nucleotide binding domain2 and examined the effect of single point mutation in 

NBD2. In this research, we build a nested graph for normal haemoglobin protein 

(1A3N) and examine the consequence of single point mutations of the haemoglobin 

protein sequence in order to study the SCD adequately. 

 

Definitions of Terms 

Some of the terms and concepts used in this thesis are listed below. 

Definition 1 (A graph) 

A graph G(V, E) may be defined as a structure containing a set V of objects called 

vertices (or nodes) in which some pairs of the objects are ”related” by a set E called 

edges. Edges link objects in the structure of graph. 

 

Definition 2 (A Clique) 

A clique of a graph is a subset of vertices of an undirected graph such that every 

two distinct vertices in the clique are adjacent. 
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Definition 3 (Adjacency Matrix) 

Any two vertexes are said to be adjacent if there exist an edge set linking the two 

such that the vertexes are said to interact. The matrix obtained for adjacent vertexes 

is called adjacency matrix. 

 

Definition 4 (Protein Data Bank) 

The Protein Data Bank is the main primary online repository or database for three-

dimensional structural data of large biological micro-molecules such as proteins 

and nucleic acids which are determined by x-ray crystallography and nuclear 

magnetic resonance for the purposes of collecting of universal proteins, 

identification of protein families and domains, reconstruction of phylogenetic trees 

and for profiling of protein structures. 

 

Definition 5 (Binding Domain) 

A binding domain refers to a protein domain which binds to a specific atom or 

molecule. They are essential by helping to splice, assemble, and translate proteins 

for the function of many proteins. 

 

Definition 6 (Mutation) 

Mutation as used in this research refers to a change in the amino acid sequence of 

a protein. An instance is the replacement of glutamic acid at position 6 by valine 

which results in one of the severe type of Sickle Cell Disease. 
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Definition 7 (Nodes) 

A node refers to the vertex where atoms or an object (protein) is located in a protein 

network. 

 

Definition 8 (Amino Acid Sequence) 

A sequential links or arrangement nucleic acids in the DNA of a specific protein. 

 

Definition 9 (Peptides) 

A network (or a link) of two or more amino acids lined by peptide bond(s). 

 

Chapter Summary 

We started the chapter by introducing the concept graphing in protein 

molecules, gave the background of the study and an introduction of some concepts 

of graph-theoretic modeling in Protein networks. We discussed the problem we 

intend to study and the significance of the studies. We also stated the objectives of 

our research and gave the definition of some terms. The chapter in all presents an 

entire structure of this thesis. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction  

In this chapter, we review some works of literature related to our study by 

first giving a background on graph-theoretic modeling with some major and 

relevant applications in the field of protein science as well as other diverse research 

disciplines with their applications in the manufacturing sectors. We also elaborate 

on the study of protein molecule networks by applying some important graph 

invariants in establishing major interactions within and between these molecules 

which formed the building blocks of living organisms. 

Modeling of Proteins by Graph-Theoretic Approach 

Graph-theoretic modeling seeks to develop an appropriate algorithm that 

will best define a pairwise relationship between objects based on their physical or 

chemical properties in a network.  

The terms graph theory and network theory are often used interchangeably 

and the difference is perhaps more one of emphasis, with network theory describing 

the application of mathematical methods to real world systems, rather than the 

study of networks or graphs for their own sake (Hodges, 2019). In graph-theoretic 

modeling, we implement the knowledge obtained in graph theory, a sub field of 

discrete mathematics. Discrete mathematics is the branch of mathematics that deals 

with objects that are distinct and are often characterized by integers rather than 
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continuous varying variables. Graph theory studies and describes pairwise 

relationships between these objects. 

The history of graph theory emerges in the year 1736 when Leonhard Euler 

attempt to solve a problem relating to walks across all of the seven bridges by 

citizens of Konigsberg¨ crossing the islands only once, without ever repeating a 

single bridge as a person walk across all seven bridges exactly once during his walk. 

Konigsberg¨ at the time in Germany was a city built around a river with two large 

islands in the middle of the Pregel River, each connected to one another by seven 

bridges. Euler formulated mathematical approach in attempting to solve the 

problem. 

 

Figure 4: Euler’s Konigsberg’s Problem 

Euler represented the landmarks as shown in Figure 4 with letters A, B, C, 

D (nodes) and decided to track a bridge “crossing” by the landmarks that one started 

at and ended at. To cross from A to B, the trip on the bridge (the edge here) would 

be referred to as AB. In crossing from position B to position D, the whole walk is 

seen as ABD. Hodges (2019) identified that using the central abstraction of 
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networks, Euler did solve a real world problem by representing the system as a set 

of nodes (or vertices) that are joined together by a collection of edges (or links). 

Euler based his approach on adjacency of the nodes and the use of the central 

abstraction of networks by which he solves the problem by proving the problem of 

visiting all islands (the nodes) whilst crossing each bridge (the edges) only once 

had no solution. That is; in graph theory, two vertexes are adjacent if they have a 

common edge (that connects them). Also, one could classify vertices by their 

degrees. The degree of a vertex is the total number of edges that are adjacent to that 

vertex. It is not possible to solve the bridge problem if there are four vertices with 

an odd degree (Hodges, 2019). Euler, in his proof expected not more than 2 degrees 

for odd vertexes which was impossible. 

Evidently, data structures within a graph according to Ni et al., (2011) 

relates object to each other where the interactions of these objects (or nodes) are 

very important as we attempt to get to another nodes reference to a formal position. 

In that case, there comes a need to consider the idea of traversal of a graph with 

usually different algorithms available for traversal, regarding the type of graph in 

question (whether directed or undirected). 

 

Protein molecule(s) Interaction Networks 

Proteins generally work as groups through a complex array of interactions 

performing a single biological function (Forero, 2017). It was shown that the 

complex interactions between different proteins were best viewed through graph 
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theoretic modeling theory, in which a residue interaction graph is modelled 

regarding each residue as a vertex and each corresponding interactions as edges. Of 

course, amino acids are linked in sequential orders to form these functional proteins 

and thus weighted edges can be used in drawing interaction networks among them. 

The case is possible among proteins as well to be able to function and help in 

transports and metabolism in cells and tissues of an organism. Subgraphs or 

subdomains of a protein sequence have been thought to be the building blocks of 

networks which show important patterns in gene regulatory networks. We could 

therefore partition our sequences into sub sequences in order to obtain a more 

connected subgraphs base on a better interactive proximal distance between 

distinctive molecules. Subgraphs thus provide evidence that suggests there may be 

evolutionarily conserved characteristics across the protein-protein interaction (PPI) 

networks of different organisms just as in DNA traces. Thus for better 

understanding of the structure of protein-protein interaction networks, Forero 

(2017) described how the local structure of these networks was accounted for by 

the occurrence of small connected subgraphs, which he created. He tackled this 

problem of complexity of interactions in PPI network by proposing a method that 

is invariant to translations and rescaling of subgraph count distributions, and which 

detects similarities across networks with the different number of nodes or edges. 

Further in modeling protein-protein interaction networks, a graph may be 

either directed or undirected. In a directed graph, we often differentiate between the 

in-degree and the out-degree, which refer to the total weights of edges into and out 

of a node. Hodges, (2019), further in his work, explained how a network of N nodes 
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may be represented mathematically by an N × N adjacency matrix, A, where the 

entry A(ij) is equal to the weight of the edge between nodes i and j in a network 

containing N nodes. A symmetric adjacency matrix is one that is obtained if the 

network is undirected one. As the degrees of each of the nodes was compiled into 

an N × 1 vector d, a diagonal matrix of node degrees was defined: D = diag(A) by 

which the Laplacian matrix: L = D – A representation of the network was defined.  

Just as graph topologies change with network structures appearing in their 

connected domains, it is necessary to consider graph isomorphism in protein 

interaction networks. Does the orientation of the haemoglobin affect its normal 

functioning? What about the amino acids in the sequence of this protein. Answers 

to this question are believed in the research context to provide a solution to a 

number of health complications associated with haemoglobin disorders as well as 

with the sickle cell disease. According to Jarman, (2017), social networks to 

computer networks, protein and transport networks, and neuronal networks of the 

mammalian brain, many of these networks share common structural properties. 

Proteins, according to Blanco & Blanco (2017), are polymers of structural 

units called amino acids. Thus proteins have their foundation from amino acids 

composing of amine (-NH2) and Carboxyl (-COOH) functional groups along with 

a side chain (R group) that is specific for each amino acid. They have a carboxyl 

group and amino group bonded covalently to α-carbon atom first. This peptide 

bonds linking the various amino groups can be weighted and their weights, when 

investigated based on physical and chemical compositions, tells us what elements 

are more pairwise-related in a connected domain. We also noted that in the 
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secondary structure of the haemoglobin, there exist highly regular local sub 

structures on the actual polypeptide backbone chain defined by patterns of 

hydrogen bonds between the main chain peptide groups. The α-helix shows the 

characteristics of this specific protein with the tertiary structures helping us 

visualize in three-dimensional structural view of the haemoglobin as either 

monomeric and multimeric protein molecule. 

 

Protein Binding Domain 

Research shows that most mutations in DNA sequences do take place in the 

binding domains of a protein. DNA-binding domains are often part of a larger 

protein consisting of further protein domains with differing function. The majority 

of these mutations occur in the conserved central portion of the gene, but there has 

been little information about the function of this region (Pavletich, Chambers, & 

Pabo, 1993).  

Mutations in CFTR are located in the nucleotide binding domain 1 and 2 

(Knisley et al., 2013). Knisley et al. (2013), Kakraba (2015), Kakraba & Knisley, 

2016) modelled NBD1 and NBD2 of the cystic fibrosis transmembrane regulator 

using a nested graph model. Unlike Knisley et al. (2013), Kakraba (2015), Kakraba 

& Knisley, 2016) in their work used atomic numbers in weighing the node/vertexes 

of amino acid molecule in the graph network which best describes the entire protein 

for that matter. According to Knisley et al. (2013), given an amino acid, the 

backbone and central carbon atom are represented by a single vertex and each of 
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the atoms in the corresponding amino acid residue structure is represented by a 

vertex which was weighted by the mass of the corresponding atom. Edges however 

depicted molecular bonds with molecular bonding to hydrogen atoms being 

ignored. Kakraba (2015) in his thesis report did include hydrogen atoms to his 

molecular weight estimation which gave a true reflection of the various amino acid 

residues in the protein they worked with. Using the hydrogen suppressed models 

however, Knisley et al. (2013), obtained twenty corresponding vectors of 

descriptors based on the graph-theoretic measures of the twenty most common 

amino acids which were weighted domination, weighted diameter, circumference 

and weighted periphery. Measure of polarity and hydrophobicity were also used to 

compute graph descriptors to create a cluster in order to determine the impact of a 

single point mutation in the domain. 

Later in a follow up work, Kakraba & Knisley (2016) did partition the 

sequence of CFTR corresponding to NBD2 domain into a number of sub-sequences 

on the basis of existence of alpha helixes or beta sheets or loop based in the 

secondary structure of the CFTR protein. They ensured they did not cut through a 

binding-site which is a necessary condition for drawing any protein domain. They 

obtain a number of sub-sequences Si: S1, S2, S3,...,Sn; where n is total number of 

subsequences. 
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Figure 5: Hierarchical graph for NBD2 (Kakraba & Knisley, 2016) 

Stability of Protein Molecule(s) Interaction Networks 

It is seen that there exist some general underlying mechanisms for the 

emergence of certain complex network structures within and about a protein of 

which mutual relationship between structure and function in self-organising 

networks remained one major shared principle. To understand their emergence, 

Jarman (2017) decomposed the problem into two simpler problems and found their 

solutions by identifying; how a structure does effect dynamics and; also how the 

dynamics do shape the structure. The directed chain and the directed cycle 

connectivity configurations were considered in Jarman’s work which was 

distinguished by a single edge with stability analysis revealing radical changes in 

the patterns of dynamics. According to Jarman (2017) stability successfully reduces 

the highly complex problem of complex network emergence to patterns of 

connectivity through the understanding of the self-organisation of complex network 

structures across a broad range of contexts. As seen, Forero (2017) and Hodges 

(2019) were concerned with the application of graph theory in their research work 
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(network modeling) whereas Jarman was into the stability of complex network 

systems. No research, however, took into accounts the various or possible 

subdomains of a protein. Knisley et al. (2013), Kakraba (2015), Kakraba & Knisley 

(2016) considered drawing out the subdomains of nucleotide-binding domain 1 and 

2  to examine the effect of single point mutation in cystic fibrosis transmembrane 

conductance regulator. 

 

Applications of Graph-Theoretic Modeling 

Graph theory over the years have reasonably contributed to diverse research 

disciplines through knowledge advancement and the applications of graph-theoretic 

modeling to fields such as engineering, physical, biological and material sciences. 

One major area of the applications of graph-theoretic modeling systems is protein 

networks where there is always a number of pairwise relationships between 

molecules as well as atoms (Ni et al., 2011). Graph-theoretic modeling approach 

has been successfully used to study the dynamics of protein network domains. 

Another important area that we can apply graph theory is the area of drug design. 

The protein function is very essential in the discovery and design of drugs and since 

nested graph can be used to understand the protein function, it can thus be used as 

a powerful tool in drug discovery. Graph-theoretic modeling is also applied to solve 

issues relating to crime, scheduling of flight, transportation, etc. Figure 6 below 

showed a guilt by association graph of a company’s email a few weeks before the 

company went bankrupt in which case vital information relating to sales was leaked 
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by some members of the company which led to other people selling their stocks in 

time before the market went down (Jensen, 2020). The vertices in this network are 

people, of which some were not mentioned; the edges were emails sent across.  

 

 

 

Figure 6: A Screenshot of a guilt by association graph (Jensen, 2020) 

Also in the field of transportation, graph-theoretic model help to optimise 

profits in some cases and as well helps to reduce a number dangerous risks in 

experimentations. Mail delivery systems use graph theory to find the optimal node, 

thereby saving fuel and resources. 

Chapter Summary 

In this chapter we did discussed the background of graph theory and its 

modeling approaches with some related literatures been reviewed. We looked at 
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literature on the main source of knowledge on graph theory. We went ahead to 

review literature on some protein-protein interaction networks methods used in the 

study of proteins and provided some applications in DNA sequencing and drug 

design. Graph-theoretic modeling simply involves application of graph theory to 

model/study real life problems. Although the study of graph theory have been in 

existence for long time, its applications has recently found space in several research 

and application fields.  
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CHAPTER THREE 

RESEARCH METHODS 

Graph Invariants as Measure of Molecular Properties 

 The method applied in this work is analogous to that used by Kakraba 

(2015), Kakraba & Knisley (2016) in examining the impact of a single point 

mutation in the cystic fibrosis transmembrane conductance regulator. We used 

some of the molecular database for the 20 most essential amino acids computed by 

Kakraba & Knisley (2016) and applied similar graph-theoretic modeling approach 

to study the effect of single point mutations on the haemoglobin domain of the 

sickle cell disease. We also used absolute difference in molar masses for node 

descriptors which we transcended to the edges as edge weights based on molar 

masses of compounding residues generated for each subdomain at the top level 

graph. We also used the weights in our weighted graph to generate further new 

descriptors for the top level graph each assigned to specific subdomain.  

We first compared the Wildtype Haemoglobin and known mutation 

phenotypes in obtaining the molecular sequences and structures of the normal 

human haemoglobin “A” (with gene name 1A3N) in order to locate the position of 

the mutation in the structure. We used the 1A3N pdb protein id for our study. We 

obtained the full sequence length of 1A3N and used the secondary structure to guide 

our partitioning into sub-sequence as shown in Figure 7. 
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Figure 7: Sequence view of 1A3N in pdb (Tame & Vallone, 1998) 

 

Structural Visualization 

UCSF Chimera program is a protein molecular visualization and modeling 

tool (Pettersen et al., 2004). Chimera program (Pettersen et al., 2004), as launched 

in cytoscape, also aided in visualizing our protein’s molecular structure in which 

we would distinguish our binding domain into subsequence for analysis and later 

generate our residue network in cytoscape application. According to Shannon et al. 

(2003), cytoscape is an open source software platform for visualizing molecular 

interaction networks and biological pathways and integrating these networks with 

annotations, gene expression profiles, among and others. Using cytoscape program, 

we created our sub-domain graphs corresponding to the subsequences. 
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Interactions and Residue Network Creation 

A graph is a set G = (V, E), where V = {1, 2, 3, …, n} is its node or vertex 

set (a non-empty countable set of elements) and E ⊂  V ×  V is its edge set. A set 

of nodes interacts by edge set if and only if they fall within a distance of 6Å. Degree 

of a vertex is the number of edges falling on it. It tells us how many other vertices 

are adjacent to that vertex. Weighted degree of a vertex then is the weight we 

assigned to an edge falling on the vertex. All weighted measures were determined 

at a maximum diameter of 6A˚ between any two vertexes. Descriptors considered 

were order of graph, the degree of the graph, eccentricity, domination number. We 

also repeated the procedure by considering the weights of vertexes rather than edges 

to computer molecular descriptors of each subdomain graph. 

 

Weighted Graph 

 Basically, a weighted graph is a graph that has weights assigned to its edges 

or nodes. We first of all considered molecular weights of the various amino acid 

residues especially or vertexes in the case of dominated sets within the network in 

which we determined both un-weighted and weighted domination numbers. 

Weighted degrees as well were computed from subdomain graphs as well as 

eigenvectors whose results or descriptors based on molecular weights formed a vital 

basis in estimating the impart of a single point mutation in the wildtype hemoglobin 

domain of homo sapiens (humans). 
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Figure 8: A Sample Graph, G = (E, V) 

 

Consider Graph G in Figure 8 above. The idea of dominating set can be 

demonstrated supposing the nodes of the graph represents seven cities which 

needed a policing service within their township. The question we then ask ourselves 

is that- “in which of these towns can we build a police station in order to minimize 

the wastage of resources such that each community gets an immediate access to 

policing services?” Obviously, we have town “A” and town “F”; thus the 

dominating set graph G = (V, E) is given as a subset U of V such that every vertex 

not in U is adjacent to at least one member of U. 

e.i. U = {A, F}; The domination number 𝛾(G) is also given as the number of 

vertex(s) in U, thus; 𝛾(G) = 2 

The weighted (G) is also given as the degree of each dominating vertex, thus;  

Total weighted (G) = deg(A) + deg(F) = 3 + 2 = 5 
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Adjacency Matrix 

For a graph G = (V, E); where V = {1, 2, … , n} . We considered an 

interaction within a maximum of 6Å between any two vertexes for residues to 

interact. Functionally, two equivalent graphs are isomorphic, but the converse is 

not true. Thus the adjacency matrix has a binary matrix which have entries zero(s) 

and ones in which case each diagonal entry is zero (no self-loop). 

For an N number of nodes, there is an "N × N" adjacency base on closeness measure 

within a 6Å radius distance from any given vertex given by;  

𝐴(NxN)  =  [𝐱𝒊𝒋], such that the entries;  

𝑨𝒊𝒋 = {
𝟏 ; 𝒊𝒋 ∈ 𝑬
𝟎 ; 𝒊𝒋 ∉ 𝑬

    (1) 

Suppose the graph G = (V, E) in figure 8 above is a residue interaction network; 

where V = {A, B, C, D, E F, G} is the vertex set consisting of 7 residues at defined 

positions along respective residue sequence of our haemoglobin protein with edge 

set E = {AB, AC, AD, DE, EF, FG}. 

The adjacency matrix is thus given as; 

𝐴 =

[
 
 
 
 
 
 
0
1
1
1
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
1
0
0

0
0
0
1
0
1
0

0
0
0
0
1
0
1

0
0
0
0
0
1
0]
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Centrality Measures 

1. Degree Centrality: 

The degree centrality C(Di) of a vertex Vi ⊂ V in a graph G(V, E) is defined as the 

number of vertex in V adjacent vertex Vi. This is given below in equation (2): 

𝐂(𝐃𝐢) = ∑𝑨𝒊𝒋

𝒋

                                   (2) 

2. Closeness Centrality 𝐂(𝐜𝐮): 

This measures the shortest paths from vertex i to all other vertexes Vj in the graph. 

𝐂(𝐜𝐮) =
𝐧 − 𝟏

∑ 𝒅(𝒖, 𝒗)𝒗
                                  (3) 

where 𝑢 ≠ 𝑣; and d(u; v) is the shortest path between node u and any v in the graph. 

"n" is the number of vertex. 

3. Eigenvector Centrality 𝐱𝐢: 

The eigenvector score xi shows how influential or connected a vertex is relative to 

other vertexes in the graph. We used the eigenvector components corresponding to 

real largest eigenvalue obtained from the characteristic equation det(A − I ) = 0 ; 

of adjacency matrix A. 

𝐱𝒊 =
𝟏

𝝀
∑𝐀𝒊𝒋𝐱𝒋

𝒋

                                         (4) 

where xi is the relative centrality score of vertex i : 𝐀𝒊𝒋 is the ij(th) element of the 

adjacency matrix and 𝜆 is the greatest eigenvalue in A. 
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4. Betweenness Centrality 𝐂𝐁(𝐧𝐢): 

This is the ratio of all the shortest paths passing through a node and the total number 

of shortest paths in the network. 

𝐂𝐁(𝐧𝐢) = ∑
𝒈𝒋𝒌(𝐧𝐢)

𝒈𝒋𝒌
𝒋<𝒌

                                             (5) 

𝑔𝑗𝑘 is the number of geodesics(short paths) connecting jk and; 𝑔𝑗𝑘(𝑛𝑖) is the 

number that node i is on. 

 

In comparing isomorphic graphs which are symmetric (but the inverse is 

not), the greater the size-to-order ratio of one graph is to another, then we say the 

former has more interaction or connectivity than the later. This is often true and 

may often be considered in instances of determining the functionality of proteins 

since proteins with similar functionality often do interacts. Betweenness centrality 

is based on communication flow and vertexes with a high betweenness centrality 

score do lie on communication paths and can control information flow. Nodes in 

the graph that have many “shortest paths” going through them, analogous to major 

bridges and tunnels on a highway map (Yu, Kim, Sprecher, Trifonov, & Gerstein, 

2007). Eigenvector centrality (EC) measures a vertex’s influence on a network with 

highly connected vertex in the graph having high EC scores. EC serves as a measure 

of the connectivity against a fixed scale when normalized, so it can be used to 

reliably compare different networks (Negre et al., 2018). In this work, some 
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molecular descriptors assigned to the amino acids in the subdomain graphs were 

taken from previous work by Kakraba & Knisley (2016). 

 

Nested Graph-Theoretic Model of Haemoglobin Protein Domain 

I used cytoscape mainly for our network analysis. However, UCSF chimera 

(as launched via program launch pathway in cytoscape) is a program for the 

interactive visualization and analysis of molecular related data and structures. 

Chimera takes a modelled protein structure in PDB format as input and gives a 3D 

structural view of the peptides/ amino residues for our protein analysis analysis.  

In chimera, we distinguished and selected our favourite sequence in the 

wildtype haemoglobin sequence chain B to generate a residue structure for analysis. 

Java program earlier installed in our browser system was a necessity to convert our 

python codes in chimera program which is in readable in cytoscape. 

Structural visualization in Chimera also assisted in partition our binding-domain 

into subdomains. 

I created a 3D interaction graph of our favourite domain sequence at 

interactive distance of 6 angstoms in Cytoscape using structureViz application also 

in Cytoscape. We determined weighted domination of the graph based on molecular 

descriptor such as the size and order of the graph were computationally obtained 

using a number of network algorithm in cytoscape based on graph theory literatures. 
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Sequence Partition 

I obtained our sequence data from GeneBank as a primary sequence data 

and run the sequence in the protein data bank upon which we had a 100% 

corresponding protein structure which is de-oxy haemoglobin protein with identity 

1A3N. We identified the chain “B” and upon a magnified visualization in chimera, 

we partitioned the sequence into sub-sequences on the basis of existence of α-

helixes, β-strands and loops. We avoided cutting through the binding sites, alpha 

helix, beta strands as these contained important biological information needed to 

be preserved. 

 

Figure 9: 1A3N Sequences Visualized in Chimera 

The Figure 9(a) shows a visualized result of the chain-B being distinguished 

by action colouring in Chimera. Figure 9(b) shows subsequence S1 by 

demonstrating proceedings by method of spinning about axis for the sub-divisions 

of our β-binding domain of the human hemoglobin “A”. We repeated the procedure 

for each of the sub-sequences. We also used the plain sequence view in Figure 7 to 

locate binding sites. 
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Table 1: Subsequence Partition of 1A3N 

Sub-domain Sequence Reasons 

S1 1...17: 

VHLTPEEKSAVTALWGK 

Coil, alpha helix, turn 

S2 18...35: 

VNVDEVGGEALGRLLVVY 

Coil, Alpha helix, bend 

S3 36...48: 

PWTQRFFESFGDL 

3/10 helix, coil, binding 

site 

S4 49...57: 

STPDAVMGN 

Bend, alpha helix, coil 

S5 58. . . ..73: 

PKVKAHGKKVLGAFSD Alpha helix, 

S6 74...79: 

GLAHLD bending site 

S7 80...94: 

NLKGTFATLSELHCD 

Alpha helix, binding site 

S8 95…117: 

KLHVDPENFRLLGNVLVCVLA

HH 

Turn, coil, alpha helix, 

site 

S9 118…123: 

FGKEFT 

3/10 helix, bend 

S10 124…146: 

PPVQAAYQKVVAGVANALAH

KYH 

alpha helix, turn, coil 

Source: Tame & Vallone (1998) 

The full human haemoglobin “A” (β-chain) obtained from the GeneBank is: 

1-40: VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR 

41-80: FFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN 

81-120: LKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 

121-146: EFTPPVQAAYQKVVAGVANALAHKYH 
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A residue interaction network of the entire sequence is presented in the 

Figure 10 below.  

Figure 10: β-Chain Sequence Network Layout of 1A3N in Cytoscape 

Also, the graph in Figure 11 below demonstrates original orientations of 

two of our residues and created corresponding sub-graphs in Cytoscape. We 

magnified the orientations for each domain graph and visualized highly functional 

connected residues to determine a number of graph invariants (e.g. eccentricity and 

weighted domination) for the analysis of local effects within the residue network. 

 

Figure 11: Original orientation of two sample sub-graphs in Cytoscape 
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Residue Interaction Graphs In Cytoscape 

For the purpose of this thesis, regarding all the subsequence graphs, we 

excluded contacts, clashes, hydrogen bonds and backbone connectivity in 

interaction networks. We however maintained an interacting distance of 6Å 

between adjacent residues and included interacting distances between CA atoms. 

Each subdomain residue network was compressed into a single node or vertex and 

their respective centroid determined as interaction point to other compressed 

vertexes. We then used edge embedded spring layout to link each of the sub-graphs 

of the compressed β-chain of 1A3N protein structure to create a graph of 10 vertex 

based on whose interactions we computed descriptors for the top level graph.  

 

 

Figure 12: Compressed β-Chain Haemoglobin Binding Domain  

 

I used the reaction forces along the edges to compute new molecular 

centrality descriptors using absolute difference in molar masses as weight along 

interacting edges (on assumption that acceleration of molecular substances between 
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residues is constant or equal for any two interacting residues) in the top level graph 

as shown in Figure 12.  

 

Weighted Edge Model 

A weighted node within a graph gives a local measure/effect within a graph 

since it does less in considering the whole graph whereas we obtains a global 

measure/effect from edge weight.  

A weighted undirected graph G = (V, E, w) is an undirected graph G = (V, E) with 

a function w: E∈R+, where R+ is set of positive Real numbers. The adjacency matrix 

of a weighted graph G will be denoted   NNA   , and is given by; 

   
   

 








Ejiif

Ejiifjiw
jiwA NN

,;0

,;,
,  

 

The degree of a weighted graph G denoted by Di, is the sum of the upper or lower 

diagonal entries of the adjacency matrix A such that: 

D𝑖= ∑A𝑖𝑗 …………………(3.5)

𝑗

 

Where Aij is the ijth element of A. 

As adjacent residues within the haemoglobin interacts, there exist forces usually by 

contact or attraction by which they obtain energy in executing their functions as 

oxygen transport molecule as well as the disseminating necessary information for 

the maintenance of the biological system of humans. 
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Figure 13: Displaced Weight based on momentum along edge Ri–Rj 

 

Suppose there is equal acceleration for an interaction force between residue 

Ri and Rj in Figure 13, then the interacting force is proportional to the displaced 

mass along the edge which enhances the flow of information or functionality 

between this two residues. From the figure 13, M(Ri) and M(Rj) are respective 

molar masses of residue Ri and Rj. 

The change in molar mass per average edge degree along the edge between Ri and 

Rj given by; 

𝛥𝑀 = |
𝑀(𝑅𝑖) − 𝑀(𝑅𝑗)

𝑑̅
| × 𝑔𝑚𝑜𝑙−1                                      (6) 

Where 𝑑̅ is the average weighted degree (also defined as the average adjacent 

degree per node of the graph). 

The unit of molar mass of residues is gram per mole (𝑔𝑚𝑜𝑙−1); thus weight 

between adjacent residues is the mass in kg per one mole of substance displaced 

along their edge is,  

𝑚 = |
𝑀(𝑅𝑖) − 𝑀(𝑅𝑗)

𝑑̅
| × 10−3𝑘𝑔                                                    (7) 
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This is the weight we assigned to any interacting edge and computed graph 

centralities based on edge weight to obtain the top level descriptors. Thus mass in 

kg per one amount of substance (in mole) displaced between any two adjacent 

residues is the weight which is equal to the absolute difference in molar mass per 

average weighted degree based on edge. 

 

Nested Graph-Theoretic Model of Haemoglobin Protein Domain 

The graph in Figure 14 below shows a hierarchy of our top level graph made 

of compounding residues being compressed into a single node. Basically, we 

created a graph of a healthy haemoglobin (full wildtype) protein sequence of the β-

chain which we used as a basis to perform mutation at the top level. We achieved 

this by regrouping and compressing each subdomain into a single vertex and linked 

these graph at their centroid point to any adjacent grouped centroid node of another 

subdomain within the stipulated 6Å interacting range. The result yielded a cluster 

of two communities of interacting main compounding residues with a number of 

cliques shown in Figure 14. We then proceeded and show the nested graph of the 

β-chain binding domain in Figure 14 below which depicts the main composition of 

the domains at each graph domain level. 
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Figure 14: A Hierarchical Graph of β-Chain Haemoglobin Binding Domain 

 

The top level domain graph C of is made of compressed subdomain residue network 

with each having a unique secondary structure. The subdomain graphs are made of 

different amino acids at specific location point along the β-chain sequence.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Visualizing Effect of Single Point Mutations on the Haemoglobin Domain 

In this chapter, we discuss the entire results regarding the impact of a single 

point mutation in the normal haemoglobin protein chain “B” resulting in sickle cell 

disease (a defective haemoglobin sequence). Consequent to this mutation is the 

health-related implications in patients as the haemoglobin in the red blood cells 

fails to function effectively as oxygen transport molecule in the body due to a 

different molecular orientation of the new residue structure with it the new distinct 

molecular properties. 

Some of the resulting mutation in this regard gives a severe health 

complications which often leads to death while others had mild health 

complications where carriers of this gene type live normal lives. 

 

Impact of Displaced Mass on Mutation along Interacting Edges 

We first computed descriptors for the various subdomains including those 

of mutant domains with respective specific positions along the protein sequence. 

We resubmitted our mutant sub-sequence of corresponding subdomain to I-

Tasser to obtain edge interactions between adjacent nodes. We chose a predicted 

model with higher C-scores having a visual similarity with the non-mutated 

domain. C-score is an I-Tasser prediction score in the range [-5, 2]; the higher the 

score, the better the prediction. We re-computed our molecular descriptors. For 
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each mutant domain we computed corresponding top level descriptors for both 

cases of un-weighted and weighted graphs. 

 

 

Figure 15: Subdomain S1 and its corresponding mutant domain E6V graph 

The displaced mass along each edge based on the molar masses of 

adjacent residues per 1 mole of substance was computed for all wildtype 

subdomains and the mutant domain for respective subsequence and their graph 

centralities computed using the top level graph and we present the results in Table 

2 below. We then proceeded to cluster these results to determine the impact of a 

single point mutation in the -chain domain of the normal human haemoglobin 

“A”. 
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Table 2: Vertex Composition and Molecular Weights of Top Level Graph 

Top level vertex compositions Weight / 10−3𝑘𝑔 

G1: VHLTPEEKSAVTALWGK 2154.3 

G2: VNVDEVGGEALGRLLVVY 2208.3 

G3: PWTQRFFESFGDL 1846 

G4: STPDAVMGN 1035 

G5: PKVKAHGKKVLGAFSD 1952.3 

G6: GLAHLD 714.9 

G7: NLKGTFATLSELHCD 1901.2 

G8: KLHVDPENFRLLGNVLVCVLAHH 3020.5 

G9: FGKEFT 817.9 

G10: PPVQAAYQKVVAGVANALAHKYH 2829.2 

E6V: VHLTPVEKSAVTALWGK 2124.3 

E6K: VHLTPKEKSAVTALWGK 2153.4 

V23I: VNVDEIGGEALGRLLVVY 2222.4 

E26K: VNVDEVGGKALGRLLVVY 2207.4 

K82N: NLNGTFATLSELHCD 1887.1 

K95E: ELHVDPENFRLLGNVLVCVLAHH 3021.4 

Source: Tame & Vallone (1998) 

In Table 2, we computed new molecular descriptors based on molecular 

descriptors of residues in the compressed nodes/vertexes using the top level graph 

C. We located the mutant domains of the top level graph which is G1, G2, G7 

and G8 and computed new displaced mass weights along the edges with and the 

results presented in Table 3. 

For each mutant top level domain, we calculated their centralities and 

present the results in Table 4 all based on residue molecular weight.  
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Table 3: Edge Weights in kg per average degree of interaction in Top Level Graph 

Interactions                 Mutation Phenotypes 

 WildType E6V E6K V23I E26K K82N K95E 

G3:G5 0.035433 0.035433 0.035433 0.035433 0.035433 0.035433 0.035433 

G9:G10 0.670433 0.670433 0.670433 0.670433 0.670433 0.670433 0.670433 

G8:G10 0.063767 0.063767 0.063767 0.063767 0.063767 0.063767 0.064067 

G8:G9 0.7342 0.7342 0.7342 0.7342 0.7342 0.7342 0.7345 

G1:G10 0.224967 0.234967 0.225267 0.224967 0.224967 0.224967 0.224967 

G4:G5 0.305767 0.305767 0.305767 0.305767 0.305767 0.305767 0.305767 

G3:G4 0.270333 0.270333 0.270333 0.270333 0.270333 0.270333 0.270333 

G10:G7 0.309333 0.309333 0.309333 0.309333 0.309333 0.314033 0.309333 

G7:G8 0.3731 0.3731 0.3731 0.3731 0.3731 0.3778 0.3734 

G5:G6 0.412467 0.412467 0.412467 0.412467 0.412467 0.412467 0.412467 

G6:G7 0.395433 0.395433 0.395433 0.395433 0.395433 0.390733 0.395433 

G2:G5 0.085333 0.085333 0.085333 0.090033 0.085033 0.085333 0.085333 

G2:G4 0.3911 0.3911 0.3911 0.3958 0.3908 0.3911 0.3911 

G2:G3 0.120767 0.120767 0.120767 0.125467 0.120467 0.120767 0.120767 

G8:G2 0.270733 0.270733 0.270733 0.266033 0.271033 0.270733 0.271033 

G1:G2 0.018 0.028 0.0183 0.0227 0.0177 0.018 0.018 

Source: Generated from Analysis (2020) 
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The coloured weight results in Table 3 represent change in weights as a result of a single point mutation for each specific domain.
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Table 4: Weighted Molecular Centrality Measures of Mutation Top Level Graph  

TLGMCM WildType E6V E6K V23I E26K K82N K95E 

WMaxDeg 1.4418 1.4418 1.4418 1.4371 1.4421 1.4465 1.443 

WMeanDeg 0.936233 0.940233 0.93635 0.93905 0.93605 0.93717 0.93647 

WMinDeg 0.2429667 0.262967 0.2436 0.247667 0.242667 0.242967 0.242967 

WMaxEig 0.582758 0.582855 0.582742 0.583486 0.582763 0.581722 0.582701 

WMeanEig 0.24784 0.24751 0.24785 0.24725 0.24782 0.24765 0.24783 

WMinEig 0.036708 0.035591 0.036708 0.036166 0.0366554 0.036391 0.036696 

WMaxClos 0.1917701 0.192546 0.1918 0.19122 0.191804 0.19193 0.191854 

WMeanClos 0.15243 0.15311 0.15245 0.15217 0.15244 0.15252 0.15247 

WMinClos 0.10002 0.10071 0.10001 0.09987 0.10002 0.10011 0.10003 

Source: Generated from Analysis (2020) 
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Weighted molecular centrality measures as computed at the top level in Table 4 

were based on centrality measures in equation 3.1, 3.2 and 3.3 for the top level 

graph C in figure14 with the weights in Table 3 being assigned to edges as 

weights. 

WMaxDeg = Weighted maximum degree:   

WMeanDeg = Weighted mean degree:  

WMinDeg = Weighted minimum degree 

WMaxEig = Weighted maximum eigenvector:   

WMeanEig = Weighted mean eigenvector:   

WMinEig = Weighted minimum eigenvector:  

WMaxClos = Weighted maximum closeness:  

WMeanClos = Weighted mean closeness:  

WMinClos= Weighted mean closeness
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Hierarchical Clustering and Impact of a Single Point Mutation in the β-

Chain of Haemoglobin “A” 

To visualize the impact of single point mutations in the β-chain 

haemoglobin protein domain, we used R statistical software to create a hierarchical 

cluster with the single-linkage function. The single linkage function was used for 

our hierarchical clustering because it gives a less bias estimate in the spread. The 

Figure 16 depicts the clustering of our haemoglobin protein domain.
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Figure 16: Single point mutations in the haemoglobin protein 
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The dendrogram clustering of our molecular descriptors results of Table 4 

in Figure 16 evidently shows a maximum distinct spread from the Wildtype 

resulting from the replacement of glutamic acid at position 6 by valine (E6V). 

As obvious, E6K, E26K and K95E mutations showed a much less significant effect 

in spread. Additionally, K82N and V23I are as well considerably distinct from 

wildtype, even though they all belong to one bigger cluster. The impact of the 

severe mutation type is at 0.015 Euclidean distance away from the wild type 

mutation. 

A further research might question “why does the mutation E6V cluster 

entirely different in a different cluster?” Also, “under what graph-theoretic 

circumstance, based on our computation of molecular descriptors, can the spread 

between E6V and the wildtype becomes minimal as possible?” 

A solution to this very question is clinically important as it will in effect produce a 

knowledge-base leading to the design of a molecule most likely to correct this 

specific mutation in the haemoglobin domain of humans. 

Also, the severity of the mutations relative to the Wildtype are ranked in the order; 

K82N<V23I<E6V 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMEDATIONS 

Overview 

In this chapter, we summarize major results and provided conclusions based 

on set objectives which reflects relevant literatures forming the basis of this 

research. We proceed to make recommendations to enhance further research to find 

favourable effective solutions to health complications regarding sickle cell 

diseases. 

 

Summary 

The dendrogram clustering of our molecular descriptors evidently shows a 

maximum distinct spread from the Wildtype resulting from the replacement of 

glutamic acid at position 6 by valine (E6V). 

Also, E6K, E26K and K95E mutations showed a much less significant 

effect in spread whereas K82N and V23I were being considerably distinct from the 

wildtype, even though they all belong to one bigger cluster. The impact of the 

severe mutation type is at 0.015 Euclidean distance away from the wild type 

mutation. 
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Conclusions 

We used graph-theoretic methods to study the effect of single point virtual 

mutations on the haemoglobin protein domain for mutations that are associated with 

sickle cell anaemia  

We showed that E6V causes significantly huge impact on the domain, 

consistent with literature that E6V is a highly severe type of sickle cell disease. 

Clinically, mutation E6V is associated with death in most situations. Evidently, 

three mutations relative to the wildtype as presented in our work were ranked in the 

order of severity as K82N<V23I<E6V based on our model. 

This work adds to knowledge on graph-theoretic modeling for examining 

the effect of single point mutations on a protein domain. Also, future work might 

explore what corrector molecule will cause mutation E6V to cluster along the mild 

or the wild type and this answers might hold a therapeutic intervention. 

 

Recommendations 

There are several diseases today that arise as a result of single point 

mutations that have not yet been studied. Future works may examine the effects of 

how a single point mutations leads to some of these other diseases. 

Also, since we have shown through graph-heoretic model that we can 

visualize the impact of a single point mutation on an entire protein domain, suppose 

we can find a corrector molecule (say an amino acid or a protein) that can attach 

itself to the haemoglobin domain and then we recomputed descriptors of the top 
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level graph, re-cluster our descriptors to obtain a result that makes E6V cluster 

closer enough to the Wildtype, then that corrector amino acid or protein molecule 

can be considered for treatment of sickle cell anaemia disease. 
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APPENDIX A  

Table 5: Weighted Molecular Descriptors of Subsequence Graphs 

Subsequence e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 

S1 17 43 84 15 24 5 4.94118 0.25521 18 0.0315 0.2294 

S2 18 52 104 15 36 6 5.77778 0.23519 22.3333 0.02632 0.22116 

S3 13 24 48 10 42 6 3.69231 0.22179 17.8462 0.03527 0.24101 

S4 9 21 42 7 7 3 4.66667 0.40741 4.22222 0.08499 0.31253 

S5 16 45 90 11 7 5 5.625 0.25521 17.375 0.03193 0.23723 

S6 6 10 20 5 15 2 3.33333 0.58333 1.66667 0.15337 0.39865 

S7 15 40 80 13 24 5 5.33333 0.26444 16 0.03463 0.24401 

S8 23 59 118 19 49 9 5.13043 0.1525 50.6087 0.01453 0.17825 

S9 6 11 22 5 12 2 3.66667 0.66667 1.33333 0.1629 0.39954 

S10 23 62 124 19 48 8 5.3913 0.16982 43.8261 0.01584 0.18762 

Source: Generated from Analysis (2020) 
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Table 5 annotations are such that;  

e1 = number of nodes:  

e2 = graph size (number of interactions/edges);  

e3 = total vertex weighted degree of the graph;  

e4 = edge weighted domination number;  

e5 = node weighted domination base on atomic number; e6 = Diameter;  

e7 = Degree mean value;    e8 = Eccentricity mean value;   

e9 = Betweenness mean value; e10 = Closeness mean value;  

e11 = Eigenvector mean value: 

Domination, Betweenness and Eccentricity measures were used in assessing the 

impact of specific nodes in the graphs to determine how their influences within the 

graph networks. 

Descriptor e1, e2, e3, e4, e6, e7, e8, e9, e10, e11 are computed based our subdomain 

graph in appendix C. 

Descriptor e5 was based on molecular descriptors d13 from Kakraba & Knisley 

(2016). 
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APPENDIX B  

Table 6: Centrality Measures of Un-Weighted TLG 

Top Level 

Mutation  e6 e7 e9 MaxEcc MeanEcc MinEcc MeanClos 

MaxEig

Vec 

MeanEig

Vec 

MinEig

Vec 

Wildtype 3 3.2 7.8 0.5 0.36667 0.33333 0.06040 0.48123 0.30149 0.17768 

E6V 6 4.70588 23.4118 0.33333 0.21961 0.16667 0.02654 0.38370 0.21120 0.01986 

E6K 6 4.82353 23.0588 0.33333 0.22353 0.16667 0.02685 0.36870 0.21709 0.00349 

V23I 6 5.05882 22.4706 0.33333 0.22745 0.16667 0.02697 0.33410 0.22421 0.05131 

E26K 7 5 26.4444 0.25 0.19974 0.14286 0.02424 0.39217 0.20037 0.00283 

K82N 5 5.06667 16.5333 0.33333 0.25556 0.2 0.03390 0.34738 0.24224 0.05851 

K95E 5 5.04348 36.1739 0.25 0.21957 0.2 0.01741 0.38911 0.17462 0.01085 

Source: Generated from Analysis (2020) 

MaxEcc = Maximum Eccentricity; MeanEcc = Mean Eccentricity; MinEcc = Minimum Eccentricity; MaxEigVec = Maximum 

Eigenvector: MeanEigVec = Mean Eigenvector:  MinEigVec = Minimum Eigenvector;   MinClos= Mean Closenes 
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APPENDIX C  

SUB-SEQUENCE AND MUTANT-DOMAIN GRAPHS 
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APPENDIX D 

SUBDOMAIN AND MUTANT-DOMAIN GRAPHS 
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