
12

Cellular and Molecular Biology
E-ISSN : 1165-158X / P-ISSN : 0145-5680

www.cellmolbiol.org 
Mini Review

Energy requirements in mammalian oogenesis

Samuel Kofi Arhin1#, Jieqiang Lv1#, Haitao Xi1, Xingliang Jin1,2*

1 Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 
Wenzhou, Zhejiang 325027, China

2 Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of 
Sydney, St. Leonards, NSW, 2065, Australia

Correspondence to: jinxingsz4@hotmail.com; xingliang.jin@sydney.edu.au

Received January 19, 2018; Accepted July 5, 2018; Published July 30, 2018
#contributed equally to the manuscript
Doi: http://dx.doi.org/10.14715/cmb/2018.64.10.3

Copyright: © 2018 by the C.M.B. Association. All rights reserved.

Abstract: Oogenesis is a lengthy, multi-step process occurring in mammals yielding single or multiple oocytes capable of being fertilized upon interaction with 
male gametes. The overall process is highly complex in nature, starting in the primordial follicles, and its ultimate completion is preceded by the meiotic cycle. 
There are two major phases in oogenesis: the growth phase, followed by a maturation phase that requires relatively less time. Both phases require energy for the 
various metabolic processes of the oocytes. The energy requirements and the timing of maturation vary significantly among mammalian species. This review des-
cribes the variations in the mammalian oocytes development and their energy requirements. It covers the types of mitochondria, the distribution of their changes, 
and the metabolic processes occurring during the oogenesis in different mammalian species. Oocyte abnormalities associated with glucose deficiency in mammals 
are discussed, along with the role of fat and protein as alternative energy substrates. The review concludes with recommendations for future studies on oogenesis 
in mammalian species in the context of energy requirements.
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Introduction

There are several steps involved in the development 
of mature female gametes. Though the overall game-
togenesis process spans over weeks to months, the final 
phase of female gamete (oocyte) maturation is shorter, 
and varies among mammalian species. Studies have 
reported different time spans for the final oocyte matu-
ration period, including 10-13 hours in murine (1, 2), 
16-24 hours in bovine (1), and 48-72 hours in canine 
species (3-5). To attain complete physiological functio-
nality, i.e. capability of being fertilized and becoming an 
embryo, the overall cellular organelles also need to ma-
ture. This involves various organelles in the cytoplas-
mic region, as well as nuclear processes. The nuclear 
maturation is preceded by two meiotic steps. In the first 
phase of meiosis, the homologous chromosomes sepa-
rate; the second phase involves the movement of sis-
ter chromatids in opposite directions (6). An in-depth 
analysis further reveals that female gamete maturation 
is accomplished through changes in the nuclear mem-
brane, rearrangement of cytoskeletal structures, and 
associated meiotic processes. In order to further define 
the maturation of organelles existing in the cytoplasm, 
it is important that an oocyte is able to perform various 
vital functions, including messenger ribonucleic acid 
(mRNA) synthesis and associated post-transcriptional 
changes, demonstrating readiness of protein synthesis 
as post-translational modifications cellular machinery. 
All of these processes are essential for a fully functio-

nal oocyte, as well as the nascent synthesis of the glu-
tathione required for the fertilization processes and sub-
sequent stability of the embryos (7-9). The above des-
cribed nuclear and cytoplasmic maturation steps require 
an enormous amount of energy to accomplish the tasks 
described. This energy is mainly provided by the uni-
versal energy substrate glucose, and sometimes by the 
cellular metabolism of lipids and protein (10). A series 
of oxidative and reductive processes lead to the genera-
tion of reactive oxygen species (ROS), which must be 
properly handled. Calcium also contributes to all these 
processes. This review provides an extensive overview 
of recent advances in female gametogenesis (oogenesis) 
studies and the role of mitochondria, the energy-produ-
cing organelle. Overall, highly integrated metabolic and 
synthetic processes lead to functional oocyte ready to be 
fertilized and proceed with further embryogenesis. 

Oocyte development in mammals

In describing the female gamete (oocyte) develop-
ment, it is important to first understand the earlier deve-
lopmental processes. The primordial germ cells (PGCs) 
region is the area in which oocyte development is initia-
ted during embryogenesis (11, 12). Further development 
is associated with morphological changes in the PGCs 
and movement of oocytes towards the gonadal region, 
which ultimately becomes the ovary. In the gonadal re-
gion, the PGCs are subjected to mitosis characterized 
by non-cytokinesis, thus leading to interconnected germ 
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cell bunches (13). The overall cellular mass is covered 
with a layer of protective cells known as pre-granulosa 
and stromal mesenchymal cells of the ovary. There is a 
difference in the formation of oocytes among mammals; 
some exhibit in utero synthesis, for instance rats, and 
ruminants, including primates, whereas in certain other 
species, such as felines and canines, this process is com-
pleted post-birth (14). 

There are also differences in the initiation steps lea-
ding to the formation of primordial follicles, which in 
several mammals is established during the development 
of the fetus, including humans, monkeys, horses, cows, 
and pigs. In murine species this happens in the early 
days of life, and activation of this process in felines, 
canines, rabbits, and minks occurs in the second or third 
week post-birth  (14). Initial phases of primordial fol-
licle development are associated with degradation of a 
layer covering germ cells, followed by the release of a 
vast number of oocytes that invade pre-granulosa cells 
in the germ cell mass (13, 15). The breakdown of the 
sheath encasing oocytes is considered a physiological 
measure ensuring that healthy female gametes are left 
over in the follicles (13, 15). Certain mutations lead to 
germ cells having less mitochondria, or mitochondria 
unable to proliferate further, which ultimately results in 
the loss of oocytes (13).

As the fertilization involves a single female gamete, 
the majority of the primordial follicles must be elimi-
nated, either through programmed cell death processes, 
several undefined processes, or developing in stages 
from primary, secondary to antral (16-19).  In its early 
life, an increase in the size of nascent female gamete is 
observed. However, subsequent folliculogenesis leads 
to diminished growth, and the eventual attainment of 
the mature size, ready to proceed to the antral stage (20-
22). Oocyte growth is also associated with the develop-
ment of other organelles like mitochondria, endoplas-
mic reticulum, and Golgi apparatus  (14), preparing the 
cells for protein synthesis and energy production requi-
rements. Mature oocytes in mammals such as the canine 
species are resume the meiotic process, but only after 
their release from the follicular region (23). The meio-
tic resumption is associated with several changes: the 
movement of the nucleus towards the peripheral area, 
and the disappearance of the nuclear membrane, inclu-
ding nucleoli, followed by chromosomal condensa-
tion. This stage, known as germinal vesicle breakdown 
(GVBD), prepares the oocyte for the metaphase I stage, 
as the chromosomes are already positioned at the meio-
tic spindle and ready.  This is followed by homologous 
chromosomes separating into two sets. Out of these, one 
set is retained in the secondary oocyte, and the other in 
the cytoplasmic second polar body. The chromosomes 
in the secondary oocyte are further subjected to meta-
phase II, until fertilization occurs. 

During fertilization, the entry of spermatozoa into 
the oocytes is associated with completion of necessary 
meiotic processes. This is followed by the extrusion of 
gametes from the polar body, followed by their fusion 
with the male gamete leading to a zygote structure. 
Throughout all these processes, the oocyte is linked 
with the granulosa cells via trans-zonal procedures (24). 

Cell functions are mainly regulated by mitochondria

The mitochondria are an essential organelle in every 
eukaryotic cell, fulfilling the energy needs of the cells 
via various ongoing metabolic pathways. An impor-
tant characterizing feature of mitochondria is that they 
contain their own genomic material, namely mitochon-
drial deoxyribonucleic acid (mtDNA), within a mem-
branous structure that is primarily inherited mater-
nally (25). Among the several functions mitochondria 
perform within the cell, energy generation for various 
cellular processes and cellular death mediating through 
Ca++   involvement has received more scholarly atten-
tion (25, 26).  As each and every cell type in mammals 
requires energy provided by mitochondria, any defor-
mity and/or abnormality of this organelle is linked to 
pathological conditions in the heart (27, 28), brain (27), 
and sexual reproduction (26). 

Provision of energy for various biological processes 
through mitochondria in the form of ATP involves a se-
ries of oxidative phosphorylation steps and generation 
of NADH2/FADH2 within the inner membranous struc-
tures of mitochondria (26, 29). The programmed cell 
death pathways are also regulated by the mitochondria 
and these processes are tightly regulated and monitored. 
Cytosolic cytochrome B activates various enzymes in-
volved in cell death pathways and the most prominent of 
these enzymes caspases 3, 6 and 7 (30). In the wake of 
continued production of free radicals within mitochon-
dria, it is important to have a tightly controlled redox 
balance inside the mitochondria to protect from harmful 
impacts. Importantly, several biological moieties, inclu-
ding glutathione (GSH) and GSH-linked antioxidant 
enzymes such as Gpx1 and 4 are involved in regulating 
mitochondrial internal environments with appropriate 
redox balance (30). Two mitochondrial proteins also 
play important roles in neutralizing the deleterious im-
pacts of free radicals; glutathione accomplishes this task 
by providing the electrons necessary for the generation 
of H2O from the peroxides produced, and thioredoxin 
helps in maintaining mitochondrial integrity in an envi-
ronment that is rich in reactive oxygen species (30).

From the initiation of female gamete formation there 
is a continued increase in the number as well as volume 
of mitochondria. For example, during folliculogenesis 
and oogenesis, an increase in the existing cell mito-
chondria has been reported. Importantly pre-migratory 
primordial germ (PGC) cells contain less than ten mito-
chondria (25).  Upon their arrival in the ovary, the PGCs 
are subject to a ten-fold increase in the number of mito-
chondria, with an additional two-fold increase upon at-
taining the oocyte morphology. This figure continues to 
rise, and follicular oocytes have 10,000 mitochondria, 
reaching 0.1 million upon maturation (26). This conti-
nued mitochondrial increase is evidenced by changes in 
their distribution within this energy producing organelle 
(26). It is worth mentioning that histological changes 
are in the primary follicle, and the mitochondria are in 
the nuclear periphery, distributed all across the cyto-
plasm on maturation (14). A fully grown oocyte has 
homogeneity in the cytoplasmic allocation of mitochon-
dria (31). The changes observed in the localization of 
mitochondria during meiotic maturation coincide with 
the cellular energy requirements (32-34)  at various 
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reported linkages between mitochondrial polarity with 
capacity for fertilization on the passage to embryo deve-
lopment (25, 35, 37, 38). 

Oocyte maturation is powered mainly by glucose

In several mammals, the energy requirements du-
ring the maturation process of oocytes and their further 
development to become an embryo are met by glucose 
(39, 40). Several in vitro studies utilizing lower levels of 
glucose have reported abnormalities and delay in oocyte 
maturation vital processes such as meiotic processes lea-
ding to haploid gametes, and their further physiological 
functioning (39, 41, 42). Enhancing glucose metabolic 
processes through experimental manipulation in labo-
ratory environments increases the biological efficiency 
of oocytes in bovines (43) and swine (44), whereas glu-
cose deficient environments are associated with delayed 
meiotic processes (45). Any type of abnormality in 
glucose metabolic processes negatively impacts upon 
oogenesis, as reported in the diabetic mouse model, in 
the form of complications in metabolic energy genera-
tion via mitochondria and meiotic processes (46, 47).

The primary energy-providing molecule glucose is 
taken up by the oocytes through glucose transporter 
(GLUT) via facilitative mechanisms in murine (48), 
bovine (49), ovine (50), human (51) and simian species 
(52).  Despite the uptake processes, it is important to 
consider that oocytes in certain mammals do not effi-
ciently use glucose as an energy source (39, 45, 48, 53),  
as lower levels of enzymes used in glucose metabolism 
the phosphofructokinase have been reported (54). Howe-
ver, it is also important to mention here that oogenesis 
in mammals, and glucose utilization as an energy-provi-
ding molecule, are aided by cumulus cells possessing all 
the enzymes and necessary glucose-metabolizing bio-
logical efficiency, thus generating energy-rich glucose 
biological moieties like NADPH and readily metaboli-
zable pyruvate (39, 55). Importantly, utilization of glu-
cose as a primary energy source in dog gametogenesis 
when compared with other mammals (56) suggests that 
these cells possess the necessary glucose transport and 
metabolic machinery. This finding indicates that dog 
gametes may contain additional GLUT or high levels of 
glycolytic enzyme compared to those in other species.

As described above, there is a close association 
between the cumulus cells and oocytes maturation, as 
the energy requirements are fulfilled through the action 
of these important cells. It has been reported that four 
major metabolic pathways – glycolytic, pentose phos-
phate (PPP), hexosamine (HBP), and polyol pathways 
- operate in the cumulus cells, ready to provide energy 
for oocyte developmental processes. (39). Importantly, 
the former two aid murine nuclear and cytoplasmic 
maturation (57), and porcine (40, 44), bovine (40, 45, 
58) and cat (59) female gamete development.

The cumulus cells and oocytes are functionally 
integrated into the form of a cumulus-oocyte complex 
(COC), which mainly utilizes glucose to produce ener-
gy in the form of ATP and necessary pyruvate. Critical-
ly, the pyruvate generated can be further used for energy 
generation in the oocytes through Krebs’s Cycle and 
oxidative phosphorylative pathways in the mitochon-
dria, which are considered the energy powerhouse of a 

steps (32). As such, histological changes in mitochon-
drial redistribution should be examined from the pers-
pective of energy requirements based on their primary 
functionality (26).

Mammalian oocytes are reported to have two types 
of mitochondria, which differ in their polarization state, 
with a smaller proportion of highly polarized and a 
higher number of less polarized mitochondria (26, 35, 
36).  In both the murine and human female gametes, 
the highly polarized mitochondria are mainly found in 
the peri-cortical areas of the cytoplasm. This is physio-
logically beneficial, as the major energy requirements 
during fertilization steps are primarily in the plasma-
lemma region; in addition, regulating the membranous 
transport of calcium plays a significant role during the 
activation of oocytes (26, 36, 37). Studies have also 

Figure 1. (A) Immature cumulus oocyte complexes (COCs; within 
red square) within antral follicles are characterized as having com-
pact cumulus vestments and are arrested at prophase I (germinal 
vesicle stage, GV) of meiosis (B). Maturation occurs in response to 
gonadotrophin surges in vivo or release of the COC in vitro, and is 
characterized by (C) expansion of the cumulus vestment and extru-
sion of the first polar body (metaphase II; MII). (D) Within the 
COC, glucose can be metabolized via four pathways. Glycolysis 
results in the production of pyruvate, which can be further meta-
bolized via the tricarboxylic acid (TCA) cycle, followed by oxi-
dative phosphorylation for energy production (ATP). The pentose 
phosphate pathway (PPP) produces NADPH for the reduction of 
the anti-oxidant glutathione (GSSG, oxidize glutathione; GSH, re-
duced glutathione). Phosphoribosylpyrophosphate (PRPP) is also 
produced by PPP and is a substrate for de novo purine synthesis, 
important for meiotic regulation within the oocyte. Products of the 
polyol pathway (polyol) include fructose and sorbitol. The hexo-
samine biosynthetic pathway (HBP) is important for producing 
substrates for extracellular matrices (ECM) for cumulus expansion 
and O-linked glycosylation (cell signaling). MI, metaphase I; ROS, 
reactive oxygen species. Reproduced with permission from Sut-
ton-McDowall et al. 2010 (39).
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cell. Several studies have supported the generation of 
energy through glycolytic pathways for mature functio-
nal oocytes, particularly in bovine (45, 58), feline (59) 
and porcine oocytes (44). In particular, glucose deriva-
tive pathways for the generation of energy in cat ooge-
nesis induced several steps, including maturation in the 
meiotic process and GV-MII conversion process. (59). 
This, further illustrates the involvement of glycolytic 
pathways in embryogenesis, particularly in the forma-
tion of the blastocyst. 

It is important to consider that PPP generates the 
energy molecules ATP through indirect mechanisms, 
i.e. the synthesis of NADPH, which is required for 
the stability of cytoplasm and necessary GSH synthe-
sis (39, 60). The PPP generates an important molecule, 
ribose-5-phosphate, needed for the synthetic pathways 
of nucleic acids (39, 40, 61). In murine oocytes, PPP 
usually leads to glucose metabolism and stimulates ger-
minal vesicle breakdown, particularly in environments 
favorable for nucleic acid synthesis, i.e. phosphoribosyl 
pyrophosphate mediated elevated purines synthesis 
(62). The PPP continues to play a role even when the 
oocyte is fertilized, through generating NADPH and 
inducing other signaling molecules (63). Particularly 
in porcines, the PPP-mediated induction of meiosis and 
germinal vesicle breakdown, followed by MII stages, is 
critical to oogenesis (41, 44, 64). However, studies have 
also shown that controlling PPP leads to reduced glyco-
lytic pathways and lowered levels of GSH necessary for 
oocyte development (44).

There are several signaling molecules involved in 
folliculogenesis and among these, follicle stimulating 
hormone (FSH) plays a significant role (16). It has been 
reported that FSH induces meiosis by enhancing glu-
cose utilization in murine oocytes. Besides augmenting 
this vital process of female gamete development and 
maturation in mice, the FSH increases cellular absorp-
tion of glucose (65), which is then utilized through 
its metabolism via glycolytic and PPP pathways (66). 
Another report suggests that in cows the FSH stimu-
lates the tricarboxylic acid cycle (67). Besides FSH, the 
other signaling molecule associated with maturation of 
haploid gametes is luteinizing hormone (LH) (16, 68, 
69). An elevated level of LH separates granulosa cells 
from the gamete by degrading proteins and establishing 
a gap junction between the two, concomitantly inducing 
the growth of cumulus cells providing glucose-metabo-
lizing support. The overall LH signaling processes are 
mediated through the G-protein-coupled receptors, and 
the second messenger, cAMP, affects several meiotic 
and maturation steps involved in ovulation (69, 70). In 
bovine oocyte development in particular, LH induces 
glucose metabolism through glycolytic and Krebs’s 
Cycle pathways, thus generating an energy-rich envi-
ronment (67).

Glucose transporters in oocyte metabolism

As glucose is a highly hydrophilic molecule, its trans-
port across the membrane cannot occur to the necessary 
extent passively. Glucose is actively transported across 
membranes by sodium-coupled glucose transporters 
(SGLTs) or through glucose transporters (GLUTs) via a 
facilitative process. Both occur in oocytes, but the role 
of SGLTs has been found to be minimal (71). Humans 
express 14 types of GLUTs, including GLUT1-12, 14 
and H+ coupled myo-inositol-transporter (72). These 
variants show a high degree of sequence-homology, 
but remarkable differences in kinetic, distribution, and 
substrate specificity characteristics (72). 

GLUT 1, 3 and 8 are expressed in murine, sheep, 
rhesus monkey, human, and bovine oocytes (Table-1) 
(73-76). While oocytes show expression of the GLUT 
subtypes solute carrier family 2, facilitated glucose 
transporter member 1, 2 and 3 (SLC2A1, SLC2A3 
and SLC2A8), an additional transporter, SLC2A4, is 
expressed in the cumulus cells (77, 78). SLC2A4 is an 
insulin-sensitive transporter and has a much higher affi-
nity for glucose, which facilitates cumulus activity even 
in a low glucose concentration environment (79).

The oocytes undergo significant changes during ma-
turation, which alter their metabolic requirements and 
membrane characteristics. An ideally mixed distribution 
of GLUTs in the oocyte ensures that glucose supply is 
maintained during these transformations. Abnormal en-
vironmental conditions for oocytes, like hyperglycemia, 
hyperinsulinemia, and insulin resistance down-regu-
lates the expression of GLUTs, leading to compromised 
fertility (83).

As pyruvate is the major source of energy in oocytes, 
glucose consumption is lower (84). Pyruvate, produced 
by the cumulus cells, accumulates in the oviduct and 
follicular fluid (85). The glycolytic metabolism pa-
thway is well-established even though pyruvate is the 
chief substrate (86). Both the glucose and pyruvate are 
transported by a carrier-mediated mechanism in human 
oocytes (86).  

Proton-linked monocarboxylate (MCT) carriers 
transport lactate and pyruvate. Though 14 MCTs have 
been identified, only MCTs 1-4 are linked with lactate 
and pyruvate transport (87, 88). While MCTs 1-4 are 
confirmed in murine unfertilized oocytes, human unfer-
tilized oocytes express MCTs 1-2. The mRNA has been 
identified, however, the functional distribution of the 
proteins in oocytes remains unconfirmed (89-91).

While the role of pyruvate in oocytes is established, 
the transport mechanism is less understood. However, 
normal glucose transport is essential for fertility, and 
dysfunction is associated with infertility (92). For ins-
tance, diabetic mouse produce significantly smaller 
oocytes, though this can be reversed by insulin admi-
nistration (93). Genetic studies have showed that GLUT 

GLUT mRNA/Protein Distribution Species Reference
1 Y/Y Plasma membrane, cytoplasm Murine, monkey, humans (75, 80, 81)
3-6, 8, 12 Y/N Not known Monkey (73)
7, 9, HMIT N/Y Cytoplasm Murine (82)
1-12 and HMIT Y/Y Not known Murine (82)

Table 1. A summary of the distribution of GLUTs in unfertilized oocytes
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expression is upregulated by insulin growth factor 
(IGF-1) and estradiol, which indicates a likely steroidal 
regulation of GLUT expression in oocytes (94, 95). 

 
Species specificity in energy preference

The existing scientific literature strongly suggests 
differential energy requirements for female gamete de-
velopment and maturation. Murine species are mainly 
dependent on externally supplied energy in the form 
pyruvate for various nuclear and cytoplasmic organelles 
in the maturation of oocytes (96). This specific energy 
utilization from pyruvate is due to lower levels of lipids 
inside the cellular membranes of oocytes (97), which 
has been confirmed through in vitro studies showing 
that murine oocytes cannot progress to the MII stage 
in the absence of energy substrates like pyruvate and 
glucose (96). By contrast, bovine species oocytes are 
capable of progressing to maturation even if the exter-
nal energy substrates are lacking (98). These differences 
between murine and bovine species arise because cow 
oocytes have higher contents of lipids, almost 20-fold 
higher that the mouse, which can be used as a potential 
energy source. 

In terms of energy requirements in oocyte matura-
tion, the majority of mammalian species prefer pyruvate 
over glucose.  This has been reported for murine (55, 
98, 100, 101), bovine (45) and feline species (59). The 
preferential usage of pyruvate as an energy substrate is 
potentially due to the quick generation of energy, as gly-
colytic steps are needed for the conversion of glucose to 
pyruvate, whereas pyruvate is quickly assimilated, thus 
supporting the overall process and viability of these 
delicate cells (55, 100, 101). Pyruvate energy substrate 
utilization is linked to various intermediary steps rela-
ted to oocyte development, and a reduction in pyruvate 
utilization has been observed in arrested oocytes (GV or 
MII), suggesting a pivotal role for this energy providing 
molecule (100). Oogenesis in bovine species also needs 
pyruvate, which is provided by glycolytic pathways in 
the adjacent cumulus cells (54). Importantly, a higher 
concentration of glucose 6 phosphate dehydrogenase 
(G6PDH) further confirms that gametogenesis glu-
cose utilization occurs through PPP pathways and not 
through glycolysis (54).

Differential use of energy-providing substrates is 
further confirmed through studies in swine and canines 
utilizing glucose for oocyte development (23, 40), al-
though an earlier previous report suggests lipids as an 
energy substrate (102). Utilization of lipids in the ooge-
nesis of swine makes more sense, due to higher lipid 
levels (102). The role of lipids in dog oogenesis is yet 
to be explored. 

Summary and future perspectives

The female gamete maturation process is dependent 
on the energy provided by various metabolic processes. 
There is an urgent need to develop in vitro models for 
oocyte maturation as well as the preceding folliculoge-
nesis, which could enhance understanding of various 
requirements for the overall process. As of now, studies 
have focused on glucose as the primary molecule pro-
viding energy for nuclear and cytoplasmic maturation. 

The role of other energy-rich components in oogene-
sis, mainly lipids, has not been explored in detail.  It is 
important to keep in mind that various biological pro-
cesses relevant to oogenesis occur in tightly controlled 
environments and biological molecules like fatty acids, 
the major components of lipids, can be utilized as a bet-
ter source of energy. When comparing the production of 
energy in biological systems, one mole of a fatty acid 
like palmitic acid, a major component of several lipids, 
generates 130 moles of ATP, compared with 38 moles 
by the glucose. There is also involvement of different 
metabolic pathways, such as beta oxidation, in the pro-
duction of energy from fatty acids. Thus, fatty acids 
might be a better source of energy for oogenesis when 
compared with glucose; however, this has never been 
explored. 

Evidence has begun to emerge that physiological 
development of oocytes in mice is associated with ele-
vated beta-oxidation and related involvement of mito-
chondria, despite the limited amount of lipids in these 
cells ((103). Similarly, the preceding folliculogenesis 
that demonstrates lipid utilization in these processes 
(104). Therefore, research is needed aimed at unders-
tanding the role of lipids in oogenesis and the biological 
competence of cells involved in the reproduction of life. 

It is important to consider that there could be poten-
tial differences among different mammalian species in 
regard to oogenesis and associated metabolic processes. 
Future studies should be directed not only toward un-
derstanding the metabolic aspects of oocyte develop-
ment, particularly in carnivorous species, but should 
also take into consideration inter-species differences. 
The establishment of in vitro models for such studies 
can provide a wealth of detailed information regarding 
these processes.
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