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Abstract: There is accumulating evidence that prenatal exposure to air pollution disturbs fetal growth
and development, but little is known about these effects in cold climates or their season-specific or
joint effects. Our objective was to assess independent and joint effects of prenatal exposure to specific
air pollutants on the risk of low birth weight (LBW). We utilized the 2568 children of the Espoo
Cohort Study, born between 1984 and 1990 and living in the City of Espoo. We conducted stratified
analyses for births during warm and cold seasons separately. We analyzed the effect estimates using
multi-pollutant Poisson regression models with risk ratio (RR) as the measure of effect. The risk of
LBW was related to exposure to CO (adjusted RR 1.44, 95% confidence interval [CI]: 1.04–2.00) and
exposure to O3 in the spring–summer season (1.82, 1.11–2.96). There was also evidence of synergistic
effects between CO and O3 (relative risk due to interaction (RERI), all year 1.08, 95% CI: 0.27–4.94,
spring–summer 3.97, 2.17–25.85) and between PM2.5 and O3 (all year 0.72, −0.07–3.60, spring–summer
2.80, 1.36–19.88). We present new evidence of both independent and joint effects of prenatal exposure
to low levels of air pollution in a cold climate on the risk of LBW.

Keywords: air pollution; low birth weight; prenatal exposure

1. Introduction

Birth weight is commonly used as a measure of fetal growth. The World Health Organization
(WHO) defines low birth weight (LBW) as any live birth weighing less than 2500 g [1]. LBW has been
recognized as an important risk factor for fetal and neonatal mortality and morbidity, delayed growth
and cognitive development, and development of several chronic diseases later in life [2]. It has been
estimated that 15% to 20% of all births worldwide are LBW, i.e., more than 20 million births a year [3].
In Finland, the prevalence of low birth weight is approximately 4.3% [4,5].

Humans are surrounded by air pollution throughout their life; however, the prenatal period
is possibly the most vulnerable period. During this period, children are especially susceptible to
adverse effects of environmental exposures [6]. The evidence on the impact of prenatal exposure
to air pollutants on fetal growth and development has been summarized in several systematic
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reviews and meta-analyses; however, the results and conclusions have been inconsistent and even
controversial [6–10]. Maisonet et al. [11] presented already two decades ago associations between
outdoor air pollution and the risk of term LBW in Northeastern cities of the United States. Their study
found that maternal exposure to SO2 and CO during the second and third trimesters, respectively,
increase the risk of LBW. Pedersen et al. [12] compiled recently data from 14 prospective birth
cohorts involving 12 European countries (i.e., European Study of Cohorts for Air Pollution Effects
(ESCAPE)). An increase of 5 µg/m3 in prenatal exposure to PM2.5 and PM10 was associated with
18% and 16% increased risk of LBW, respectively. Even exposure to PM2.5 concentrations below the
limit values recommended by the European Union were associated with an increased risk of LBW.
Several meta-analyses have summarized the effects related to exposure to PM on the risk of adverse
pregnancy outcomes [6,8,13,14]. Stieb et al. [9] reported summary-effect estimates for reduced birth
weight, ranging from 11.4 g per 1 ppm of CO to 28.1 g per 20 ppb of NO2. In a recent original study
from our team on the effect of air pollution on preterm birth (PTB), we found an increased risk of PTB
with maternal exposure to relatively low levels of air pollution. We also found synergistic effects of
PM2.5 and ozone [15].

The study by Pederson et al. [12] on the effect of air pollution included several European countries
but did not include Finland. Based on our systematic literature search, the present study is the first to
investigate potential effects of air pollution on LBW in a cold subarctic climate (also called subpolar or
boreal climate) present in Finland.

In general, concentrations of the most relevant air pollutants in the Helsinki region have been found
to be lower than the corresponding values in major Central and Southern European cities [16]. However,
pollutant levels in Finland may be substantially higher in unfavorable weather conditions in winter,
spring, and summer. Emissions into the air are generated from residential wood combustion, vehicular
traffic, resuspended dust, energy production, and industry, especially in urban areas. In addition,
long-range transport has a notable contribution to air pollutant concentrations in Finland, including
smoke episodes from forest fires [17].

Although there was substantial evidence on the effects of prenatal exposure to air pollution on
fetal growth, there were no previous studies conducted in cold climate with relatively low levels of
air pollution. None of the previous studies have elaborated potential interactions between different
pollutants or potential seasonal differences in their effects on fetal growth.

To fill these gaps in knowledge, we assessed potential effects of maternal exposure to air pollutants
during pregnancy on the risk of LBW in a cold climate. The specific objectives were to assess potential
joint effects related to specific air pollutants with exposure taking place in different phases of the
pregnancy, as well as to elaborate potential season-specific effects.

2. Materials and Methods

2.1. Study Population

The source population included all children of the city of Espoo, Finland, who were born between
1 January 1984 and 31 March 1990. Espoo is an urban–suburban municipality (with a population of
279,000), located across the western border of Helsinki, the capital of Finland. A random sample of
children living in Espoo in 1991 was taken from the roster of Statistics Finland. The study population
included a total of 2568 children (response rate 80.3%) whose parents filled in the baseline questionnaire
of the Espoo Cohort Study [18–20]. The study was conducted in accordance with The Code of Ethics
of the World Medical Association (Declaration of Helsinki) for studies involving humans. The study
protocol was approved by the Ethics Committee of Oulu University Hospital (Oulu, Finland).

2.2. Exposure Assessment

We assessed individual-level prenatal exposure to ambient air pollutants of interest based on
exposure conditions at all the residential addresses of the cohort members from conception to birth.
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The pollutant data were based on a cascade of nested simulations performed using the system for
integrated modelling of atmospheric composition (SILAM) (http://silam.fmi.fi) [21,22]. The model
computations were first conducted on a global scale, to capture the global background levels of
pollutants and subsequently zoomed both to Europe and Northern Europe, reaching the spatial
resolution of 0.1◦ × 0.1◦ for the Northern European domain [22]. This dataset was also used as a
regional background by Kukkonen et al. [23] for fine resolution modelling of the concentrations of fine
particulate matter (PM2.5) in the Helsinki Metropolitan Area from 1980 to 2014. For a more detailed
description of the emission and dispersion computations used in this study, the reader is referred to the
abovementioned study [23]. In the study area, the spatial resolution applied in this study corresponded
to around 5.5 km in the east–west direction and 11.1 km in the north–south direction.

We used the ambient air temperature data, which was produced by interpolating the daily
temperature records of about two hundred climate stations in Finland and the neighboring countries
onto a 10 km × 10 km grid, using kriging interpolation [24]. The home coordinates of the mothers
were retrieved from the Population Register Center of Finland, and Geographical Information System
(GIS) was used to extract daily levels of air pollutants and temperature at the home coordinates.
The exposures of interest included the following air pollutants: fine particulate matter with a dry
diameter up to 2.5 µm (PM2.5), respirable particulate matter with a dry diameter up to 10 µm (PM10),
sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3).

2.3. Outcome of Interest

The main outcome of interest was LBW. We defined LBW in the present study as birth less than
3000 g (LBW3000). We selected a higher than the traditional cut point (2500 g) for LBW. Our alternative
cut point LBW3000 is justified because it maintains the conceptual idea that reduction in fetal growth
and the resulting low birth weight may indicate adverse effects of environmental exposures and/or
other factors. This was also justified because it increased the statistical efficiency of our analyses
and enabled testing the hypothesis about the effects of air pollution on fetal growth. We conducted
sensitivity analyses using the traditional LBW less than 2500 g (LBW2500). The information on birth
weight and gestational age was retrieved from the baseline data collection, and if the information was
missing, then we retrieved the information from the Finnish Medical Birth Registry, which started data
collection on 1 January 1987.

2.4. Covariates

We identified a set of determinants of LBW based on previous literature and assessed their
potential role as confounders in the multivariable statistical models. These covariates included
maternal age [25,26], gender [27,28], family socioeconomic status [29,30], maternal smoking during
pregnancy [31,32], environmental tobacco smoke exposure [33,34], and marital status [35,36]. In the
two-pollutant models, we also adjusted for the other pollutants. In addition, to assess potential
effect modification by season, we conducted stratified analyses by two birth seasons, i.e., cold season
(autumn–winter) and warm season (spring–summer). We also considered other air pollutants as
potential confounders when assessing the effect of one pollutant. We first fitted one-pollutant models
and then considered two-pollutant models by fitting one traffic related (PM2.5, NO2, and CO) and one
stationary fossil fuel combustion-related pollutant (PM10 and SO2). We also fitted two-pollutant models
with O3 as the main secondary pollutant and another pollutant. Family socioeconomic status was
categorized as low (including both parents having no degree and having a vocational degree but being
unemployed), high (including both parents having an academic degree and being white-collar workers
or entrepreneurs), and middle (including all the other combinations of education and occupation,
e.g., other parent low and high category and both parents’ students). Environmental tobacco smoke
was defined as exposure to tobacco smoke produced by another smoking person. We treated missing
information on environmental tobacco smoke (n = 593) by fitting an indicator variable called missing

http://silam.fmi.fi
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to prevent reduction in study population. The appropriateness of this approach was evaluated in a
sensitivity analysis.

2.5. Statistical Methods

We conducted multivariate Poisson regression analysis to obtain adjusted risk ratios (RR) with
their 95% confidence intervals (95% CI) as the measure of effect of exposure to air pollution during the
entire pregnancy on the risk of LBW. We compared the risk of LBW among babies with the highest
quartile (Q4) of exposure to the reference categories of exposure, i.e., those with exposure in the lower
exposure quartiles (Q1–Q3). We fitted both single- and two-pollutant models.

We studied both the independent and joint effects of different air pollutants during the entire
pregnancy on the risk of LBW. Potential interaction was estimated on an additive scale because it has
the most relevance for public health [37]. The statistical methods for estimating joint effects have been
described in detail in our previous article [15]. In short, for example, we compared the risk of LBW in
three different exposure categories, defined as (1) high CO and low O3 (A), (2) low CO and high O3 (B),
and (3) high CO and high O3 (AB), and these were compared to the reference category of “low CO and
low O3” exposure. Here, high and low refer to the exposure levels that were above or below the Q4
value, respectively. Similar categorization was carried out for the analysis of the joint effect between
PM2.5 and O3. Estimates for the independent and joint effects were derived from the modified Poisson
regression analysis by fitting both crude and adjusted models [38]. We assessed the excess relative risk
(ERR) for the independent and joint effects of the air pollutants of interest. The relative risk due to
interaction (RERI) was quantified on an additive scale by calculating the risk that is more than expected
based on summing the independent effects related to these exposures. This can be expressed in terms
of ERRs as follows:

RERI = ERR (AB) − ERR (A) − ERR (B)

We estimated the 95% CI for RERI using the method of variance estimates recovery [38]. For RERI,
the null value corresponded to a statistical significance level of p = 0.05. Applying a similar procedure,
we also studied the indsependent and joint effects of other pollutant exposures and their combinations
with O3 (i.e., between PM2.5 and O3 and between CO and O3) on the risk of LBW. For the joint-effects
analyses, we chose those pollutants that were not strongly correlated with each other but that showed
the highest increases in effect estimates in the multipollutant models

To examine the potential modifying effect by season, we performed analyses stratified by two
birth seasons, i.e., warm season and cold season. The warm season included spring and summer
(March to August) and the cold season included autumn and winter (September to February).

We have conducted several sensitivity analyses (i) by applying the air pollution data as continuous
variables, (ii) by providing the effect estimates per a 10-unit increase in each pollutant, and (iii) by
comparing the air pollution levels below and above the median values.

Analyses were carried out using PROC GENMOD procedure in SAS 9.4 statistical software
(SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Characteristics of the Study Population

Table 1 shows the characteristics of the study population. There was a total of 344 (13.4%)
infants born with LBW3000, defined as <3000 g, and among these, 218 (8.5%) were full term babies.
Approximately 48.0% of our participant mothers were above 30 years and 23.4% belonged to the
highest categories of socioeconomic status. The majority of mothers did not smoke (85.8%), and 73.0%
were not exposed to environmental tobacco smoke during pregnancy.
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Table 1. Characteristics of the study population, The Espoo Cohort Study, 1984–1990.

Characteristic Low Birth Weight <3000 g
n (%)

Non-Low Birth Weight
n (%)

Total
n (%)

Total 344 (13.40) 2216 (86.56) 2568 (100.00)
Mean birth weight (Mean ± SD) 2742.02 ± 228.59 3675.24 ± 406.62 3523.41 ± 559.77

Gender
boy 157 (45.64) 1149 (51.85) 1311 (51.05)
girl 187 (54.36) 1067 (48.15) 1257 (48.95)

Maternal age at delivery (years) 1

<25 59 (17.25) 308 (14.03) 370 (14.53)
25–30 115 (33.63) 845 (38.48) 960 (37.71)
>30 168 (49.12) 1043 (47.50) 1216 (47.76)

Family socioeconomic status 2,3

high 76 (22.22) 520 (23.57) 597 (23.36)
low or medium 266 (77.78) 1686 (76.43) 1959 (76.64)

Single parent or guardian
yes 35 (10.17) 147 (6.63) 183 (7.13)
no 309 (89.83) 2069 (93.37) 2385 (92.87)

Maternal smoking in pregnancy
yes 77 (22.38) 287 (12.97) 364 (14.17)
no 267 (77.62) 1925 (87.03) 2204 (85.83)

Environmental tobacco smoke exposure of the pregnant mother 4

yes 17 (6.91) 84 (4.88) 101 (5.11)
no 229 (93.09) 1639 (95.12) 1874 (94.89)

1 The ages of 22 persons were missing. 2 High vs. low or medium parental education and occupation. 3 There were
12 persons with missing information in this category. 4 There were 593 persons with missing information on prenatal
environmental tobacco smoke exposure. Birth weight was missing among 8 babies, and exposure information was
missing among 43 mothers.

3.2. Exposure Distributions

Table 2 presents the mean values and distributions of air pollutants and ambient temperature
for the entire pregnancy. The mean concentrations of PM2.5, PM10, CO, NO2, O3, and SO2 during the
entire pregnancy were 19.6 µg/m3, 21.4 µg/m3, 295.1 ppb, 4.3 ppb, 3.9 ppb, and 23.8 ppb, respectively.
The mean temperature was 4.8 ◦C. Table 2 presents also skewness and kurtosis of the distributions of air
pollutants in the footnote. Based on these measures, only the distribution of SO2 deviated substantially
from normal distribution (kurtosis 5.266).

Table 2. Distributions of air pollution and temperature parameters during entire pregnancy, Espoo
1 January 1983–31 March 1990.

Pollutants Mean ± SD Minimum 25th Percentile Median 75th Percentile IQR Maximum

PM2.5 (µg/m3) 19.62 ± 4.50 3.01 16.93 19.53 22.10 5.17 38.48
PM10 (µg/m3) 21.35 ± 5.12 3.17 18.47 21.15 24.06 5.59 43.78

CO (ppb) 295.09 ± 51.50 119.89 264.02 295.97 329.74 65.72 482.45
NO2 (ppb) 4.31 ± 1.23 0.21 3.63 4.41 5.07 1.44 8.73
SO2 (ppb) 3.94 ± 1.95 0.19 2.76 3.75 4.71 1.95 15.88
O3 (ppb) 23.79 ± 2.80 11.20 21.64 23.93 26.00 4.36 36.93

Temperature (◦C) 4.82 ± 2.84 −6.58 2.59 4.94 7.28 4.69 15.50

Note: Normality tests: PM2.5 skewness = 0.104, kurtosis = 1.724; PM10 skewness = 0.276, kurtosis = 2.086;
CO skewness = −0.228, kurtosis = 0.448; O3 skewness = −0.093, kurtosis = −0.217; NO2 skewness = −0.374,
kurtosis = 1.029; SO2 skewness = 1.667, and kurtosis = 5.266.

Table 3 represents the correlations of the average concentration of air pollutants. In most cases,
the correlation was positive and the lowest Pearson correlation coefficient was found between CO and
SO2. For O3, however, we detected negative correlations between O3 and CO and between SO2 and O3,
with the coefficient r being −0.26151 and −0.36899, respectively. The Spearman correlations between
SO2 and the other pollutant did not differ substantially from the corresponding Pearson correlation
coefficients (PM2.5 = 0.90292, PM10 = 0.92383, CO = 0.92383, and NO2 = 0.95573).
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Table 3. Pearson correlation coefficients for air pollutant exposures during entire pregnancy.

Pollutants PM2.5 PM10 CO NO2 SO2 O3

PM2.5 1.00000 0.99685 0.89702 0.91916 0.90082 −0.28581
PM10 1.00000 0.90623 0.93464 0.92367 −0.27277
CO 1.00000 0.97227 0.84810 −0.26151

NO2 1.00000 0.89592 −0.30946
SO2 1.00000 −0.36899
O3 1.00000

Note: CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matter with a diameter up to 2.5
micrometers; PM10, particulate matter with a diameter up to 10 micrometers; and SO2, sulfur dioxide.

Table 4 shows the effects of average air pollution exposures during the entire pregnancy on the
risk of low birth weight. The risk of LBW3000 increased in relation to the highest quartile of CO in the
two-pollutant model that adjusted for PM10 (adjusted RR 1.44; 95% CI 1.04–2.00). The effect estimates
for CO showed a similar pattern among babies born during spring and summer (adjusted risk ratio
[aRR] 1.61; 1.01–2.55) and during autumn and winter (aRR 1.26; 0.78–2.03) when adjusting for PM10.
In addition, among babies born during spring and summer, the two-pollutant model that adjusted for
O3 showed increased risk of LBW3000 (crude RR 1.29, 1.17–3.13). Exposure to O3 was related to an
increased risk of LBW3000 among babies born during spring and summer in the single-pollutant model
(aRR 1.80, 1.10–2.94) and in the two-pollutant model adjusting for the other pollutants (e.g., adjusting
for CO: aRR 1.88, 1.15–3.09). The risk of LBW3000 was also increased in relation to NO2 in the full
model and among babies born during autumn or winter, although the lower 95% confidence interval
(95% CI) was <1.00 (Table 4). The risk of LBW3000 was not related to PM2.5, PM10, or SO2 exposure in
any of the models. However, when SO2 was adjusted for CO in the two-pollutant model, we found an
increased risk with an aRR of 1.72 (95% CI 1.06–2.81).

We neither found any linear association when fitting air pollutant exposures as continuous
variables in the models (Table A1) nor any increased risk when using exposure cutoff values at Q3

(median value) in our analyses (Table A2).
Table A3 presents the results of the sensitivity analyses using the traditional definition of low birth

weight less than 2500 g (LBW2500). The risk of LBW2500 increased in relation to PM2.5. The adjusted
RRs among children born in warm seasons varied from 2.31 to 2.45, being statistically significant in
the single-pollutant model and when adjusting for O3. The adjusted RRs of CO were systematically
elevated and mainly statistically significant with higher effect estimates among children born during
the warm season. Also, the adjusted RRs for SO2 were elevated. The effect estimates for O3 were
elevated and statistically significant in all two-pollutant models, and the effect was stronger among
children born in the warm season.
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Table 4. The effects of air pollution exposure during entire pregnancy on low birth weight less than
3000 g (N = 2517), The Espoo Cohort Study, 1984–1990.

Single and
Multipollutant Models

Low Birth Weight <3000 g Spring–Summer
(Warm Season)

Autumn–Winter
(Cold Season)

Crude RR
(95% CI)

Adjusted RR
(95% CI) 1

Crude RR
(95% CI)

Adjusted RR
(95% CI) 2

Crude RR
(95% CI)

Adjusted RR
(95% CI) 2

PM2.5(Q4 ≥ 22.1 µg/m3) 3 0.90
(0.70–1.15)

0.89
(0.69–1.16)

1.06
(0.77–1.45)

1.09
(0.79–1.50)

0.67
(0.43–1.04)

0.64
(0.40–1.01)

(PM2.5 + O3) 0.90
(0.70–1.17)

0.90
(0.69–1.16)

1.11
(0.81–1.54)

1.14
(0.82–1.58)

0.64
(0.40–1.01)

0.60
(0.38–0.96)

(PM2.5 + SO2) 0.80
(0.55–1.17)

0.79
(0.54–1.16)

1.21
(0.72–2.04)

1.19
(0.70–2.02)

0.51
(0.29–0.90)

0.50
(0.28–0.89)

PM10(Q4 ≥ 24.1 µg/m3) 3 0.86
(0.67–1.12)

0.86
(0.66–1.11)

1.01
(0.73–1.39)

1.03
(0.74–1.43)

0.67
(0.43–1.03)

0.64
(0.41–1.00)

(PM10 + CO) 0.66
(0.46–0.93)

0.66
(0.47–0.94)

0.70
(0.43–1.14)

0.72
(0.44–1.16)

0.57
(0.33–0.96)

0.55
(0.32–0.95)

(PM10 + NO2) 0.71
(0.48–1.04)

0.70
(0.89–1.89)

0.97
(0.55–1.69)

0.98
(0.56–1.72)

0.51
(0.29–0.89)

0.49
(0.88–2.44)

NO2 (Q4 ≥ 5.1 ppb) 3 1.00
(0.79–1.29)

1.00
(0.78–1.28)

1.02
(0.74–1.41)

1.05
(0.76–1.45)

0.98
(0.66–1.45)

0.94
(0.63–1.40)

(NO2 + PM10) 1.30
(0.90–1.88)

1.30
(0.89–1.89)

1.05
(0.60–1.83)

1.07
(0.61–1.87)

1.49
(0.90–2.45)

1.46
(0.88–2.44)

(NO2 + SO2) 1.05
(0.70–1.59)

1.03
(0.67–1.58)

1.13
(0.64– 2.01)

1.08
(0.59–1.97)

0.97
(0.53–1.77)

0.95
(0.52–1.76)

CO (Q4 ≥ 329.7 ppb) 3 1.11
(0.87–1.41)

1.11
(0.86–1.41)

1.24
(0.90–1.69)

1.27
(0.92–1.73)

0.95
(0.64–1.40)

0.91
(0.61–1.35)

(CO + O3) 1.12
(0.88–1.43)

1.11
(0.80–1.40)

1.29
(1.17– 3.13)

1.31
(0.95–1.80)

0.93
(0.63–1.38)

0.89
(0.60–1.33)

(CO + PM10) 1.47
(1.06– 2.03)

1.44
(1.04– 2.00)

1.60
(1.01– 2.54)

1.61
(1.01–2.55)

1.30
(0.81–2.08)

1.26
(0.78–2.03)

(CO + SO2) 1.28
(0.90–1.83)

1.25
(0.88–1.78)

1.78
(1.09– 2.90)

1.72
(1.06– 2.81)

0.92
(0.55–1.55)

0.89
(0.53–1.49)

SO2 (Q4 ≥ 4.7 ppb) 3 0.99
(0.77–1.26)

0.99
(0.77–1.27)

0.98
(0.71–1.36)

1.03
(0.74–1.43)

0.99
(0.67–1.46)

0.96
(0.64–1.43)

(SO2 + O3) 1.00
(0.77–1.28)

1.00
(0.77–1.29)

1.03
(0.74–1.44)

1.08
(0.78–1.51)

0.95
(0.64–1.43)

0.91
(0.61–1.38)

(SO2 + PM2.5) 1.16
(0.80–1.67)

1.18
(0.81–1.72)

0.84
(0.49–1.43)

0.90
(0.52–1.56)

1.47
(0.90–2.40)

1.46
(0.89–2.41)

(SO2 + CO) 0.82
(0.57–1.18)

0.85
(0.59–1.22)

0.62
(0.37–1.03)

0.67
(0.40–1.12)

1.04
(0.62–1.75)

1.05
(0.62–1.76)

(SO2 + NO2) 0.95
(0.63–1.44)

0.98
(0.64–1.50)

0.89
(0.50–1.58)

0.97
(0.53–1.78)

1.01
(0.56–1.84)

1.00
(0.54–1.84)

O3 (Q4 ≥ 26 ppb) 3 1.04
(0.82–1.33)

1.05
(0.79–1.38)

1.82
(1.11– 2.96)

1.80
(1.10– 2.94)

0.89
(0.65–1.22)

0.88
(0.64–1.20)

(O3 + PM2.5) 1.02
(0.80–1.31)

1.03
(0.78–1.36)

1.86
(1.14– 3.06)

1.85
(1.12– 3.04)

0.84
(0.61–1.15)

0.82
(0.59–1.12)

(O3 + CO) 1.06
(0.83–1.36)

1.06
(0.80–1.40)

1.91
(1.17– 3.13)

1.88
(1.15– 3.09)

0.89
(0.65–1.21)

0.87
(0.63–1.19)

(O3 + SO2) 1.04
(0.81–1.34)

1.05
(0.79–1.38)

1.83
(1.12–3.00)

1.83
(1.11–3.02)

0.88
(0.64–1.22)

0.86
(0.62–1.19)

Note: All the estimates are from Poisson regression models. In the two-pollutant models, the pollutants were
included as dichotomous variables. CI, confidence interval; CO, carbon monoxide; NO2, nitrogen dioxide; O3,
ozone; PM2.5, particulate matter with a diameter up to 2.5 micrometers; PM10, particulate matter with a diameter up
to 10 micrometers; ppb, parts per billion; RR, Risk Ratio; SO2, sulfur dioxide; and µg/m3, microgram per cubic meter.
1 Adjusted for the season of birth and other confounders (including gender, maternal age, family socioeconomic
status, maternal smoking during pregnancy, environmental tobacco smoke exposure of pregnant mother, and single
parenthood); 2 adjusted for gender, maternal age, family socioeconomic status, maternal smoking during pregnancy,
environmental tobacco smoke exposure, and single parenthood; and 3 single pollutant model.

3.3. The Joint Effects of Air Pollution Exposures on the Risk of Low Birth Weight

Table 5 presents the joint effects of CO and O3 and of PM2.5 and O3 on the risk of LBW3000.
The assessment of potential effects related to simultaneous CO and O3 exposures showed that there
was a synergistic effect on the risk of LBW3000: the joint effect of “high CO and high O3” exposure
on LBW3000 was related to an adjusted RR of 1.88 (95% CI: 1.20–2.95). Based on the estimate of RERI,
there was a 108% (95% CI: 27%–494%) excess risk associated with the joint effect of CO and O3 at their
highest exposure levels when compared to the risk that would be expected based on summing their
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independent effects. There was suggestive evidence of a synergistic effect between high PM2.5 and
high O3 (RERI 0.72, 95% CI: −0.07–3.60), although the 95% CI included the null value 0. Table A4
shows that the similar pattern of joint effects was present also on LBW2500, although the estimates
of RERI were greater for both effects of CO and O3 (4.03, 95% CI: 1.61–9.28) and PM2.5 and O3 (3.53,
95% CI: 1.19–8.70).

Table 5. Joint effect of CO and O3 and of PM2.5 and O3 during entire pregnancy on low birth weight
less than 3000 g, The Espoo Cohort Study, 1984–1990.

CO Entire
Pregnancy

O3 Entire
Pregnancy n/N % of LBW

<3000 g
Crude RR
(95% CI)

Adjusted RR
(95% CI) 1 ERR (95% CI) 1 RERI

(95% CI) 1

Low (<Q4) Low (<Q4) 183/1351 13.55 1 1

High (>Q4) Low (<Q4) 69/545 12.66 0.93
(0.71–1.23)

0.93
(0.70–1.23)

−0.07
(−0.30–0.23)

Low (<Q4) High (>Q4) 63/532 11.84 0.87 (0.66,1.16) 0.87
(0.64,1.19)

−0.13
(−0.36–0.19)

High (>Q4) High (>Q4) 23/89 25.84 1.91 (1.24,2.94) 1.88
(1.20,2.95)

0.88
(0.20– 1.95)

1.08
(0.27– 4.94)

PM2.5 Entire
Pregnancy

O3 Entire
Pregnancy

Low (<Q4) Low (<Q4) 187/1320 14.17 1 1

High (>Q4) Low (<Q4) 65/568 11.44 0.81
(0.61–1.07)

0.81
(0.61–1.08)

−0.19
(−0.39–0.08)

Low (<Q4) High (>Q4) 73/566 12.90 0.91
(0.69–1.19)

0.91
(0.68–1.22)

−0.09
(−0.32–0.22)

High (>Q4) High (>Q4) 13/63 20.63 1.46
(0.83– 2.56)

1.44
(0.81–2.56)

0.44
(−0.19–1.56)

0.72
(−0.07,3.60)

Note: All estimates are from modified Poisson regression models. CI, confidence interval; ERR, Excess Relative
Risk; O3, ozone; PM10, particulate matter with a diameter up to 10 micrometers; RERI, Relative Excess
Risk Due to Interaction; and RR, Risk Ratio. 1 Adjusted for season of birth, gender, maternal age, family
socioeconomic status, maternal smoking during pregnancy, environmental tobacco smoke exposure of pregnant
mother, and single parenthood.

Table 6 shows joint effects of the pollutants on LBW3000 during spring–summer season. The joint
effect of high PM2.5 and high O3 was substantially higher during the spring–summer season, with an
adjusted RR of 4.30 (95% CI: 0.66–10.16), compared to what would be expected based on their
independent effects (1.1 for PM2.5 and 1.8 for O3). The relative risk due to interaction (RERI) was 2.80
(95% CI: 1.36–19.88). These observations should be interpreted with caution; although an increased
adjusted RR was observed, the RR was not statistically significant, apart from RERI. However, the risk
based on RERI was statistically significant, which suggests that PM2.5 and O3 enhance each other’s
effects. Interestingly, ozone—either alone or in combination with the other pollutants—increased the
risk of LBW3000 only when the pregnancy took place close to or during the cold season.

Table 6. Joint effect of CO and O3, and of PM2.5 and O3 exposures during entire pregnancy on low birth
weight less than 3000 g in spring and summer (Stratified by season), The Espoo Cohort Study, 1984–1990.

CO Entire Pregnancy O3 Entire Pregnancy n/N % of LBW <3000 g Adjusted RR
(95% CI) 1

ERR
(95% CI) 1

RERI
(95% CI) 1

Low (<Q4) Low (<Q4) 102/822 12.41 1 1

High (>Q4) Low (<Q4) 53/382 13.87 1.18
(0.84–1.65)

0.18
(0.16–0.65)

Low (<Q4) High (>Q4) 10/67 14.93 1.23
(0.63–2.36)

0.23
(0.37–1.36)

High (>Q4) High (>Q4) 8/10 80.00 5.38
(2.50–11.57)

4.38
(1.50–10.57)

3.97
(2.17,25.85)

PM2.5 Entire Pregnancy O3 Entire Pregnancy

Low (<Q4) Low (<Q4) 104/810 12.84 1 1

High (>Q4) Low (<Q4) 51/392 13.01 1.06
(0.76–1.49)

0.06
(−0.24–0.49)

Low (<Q4) High (>Q4) 13/72 18.06 1.44
(0.80–2.58)

0.44
(−0.20–1.58)

High (>Q4) High (>Q4) 5/7 71.43 4.30
(0.66–10.16)

3.30
(1.50–10.57)

2.80
(1.36–19.88)

All estimates are from modified Poisson regression models. CI, confidence interval; ERR, Excess Relative Risk; O3,
ozone; RERI, Relative Excess Risk Due to Interaction; RR, Risk Ratio; and SO2, sulfur dioxide. 1 Adjusted for season
of birth, gender, maternal age, family socioeconomic status, maternal smoking during pregnancy, environmental
tobacco smoke exposure of pregnant mother, and single parenthood.
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4. Discussion

4.1. Main Findings

The results of the Espoo Cohort Study on the effects of prenatal air pollution exposure on low
birth weight strengthened the evidence that maternal exposure to air pollutants during pregnancy
increases the risk of LBW using both 3000 g and the traditional 2500 g as the cut point. These are
the first findings in a cold climate with relatively low levels of air pollution. Babies with the highest
exposure to CO had an increased risk of LBW3000, with estimates varying between 11–44% depending
on adjustment for other pollutants. The effect estimates were even higher among children born during
the warm season with a 24% to 78% increase in the risk. Among babies born during the warm season,
the highest exposure to O3 was related to an 80% to 88% risk increase. The effect estimates for LBW2500

were systematically higher.
None of the previous studies had elaborated potential interactions between different pollutants

or potential seasonal differences in their effects on fetal growth. Thus, we present novel evidence
of synergistic effects related to the highest exposure levels of CO and O3 as well as of PM2.5 and O3.
The presence of high average levels of both CO and O3 increased the risk of LBW3000 by 108% (27–394%)
more than what would be expected from summing their independent effects. The corresponding
risk increase for the joint effect of PM2.5 and O3 was 72% (95% CI: −7–260%). The synergistic effects
observed were even stronger among children who were born in the spring–summer season.

4.2. Validity of Results

Selection bias was minimized in this study, as it was a population-based study with a good
response rate at 80.3%. Potential for selection bias from excluding mothers who did not receive any
prenatal care was also minimal, as practically all pregnant women in Finland receive prenatal care [39].

Ideally, exposure assessment should be based on personal monitoring of pregnant women
throughout the pregnancy, but this was not feasible in a large epidemiologic study with current
methods. Misclassification of prenatal exposure to air pollution was minimized, as we were able to
use maternal residential addresses throughout the pregnancy period to get an excellent coverage for
the exposure assessment. In addition, the exposure assessment method used was independent of
the outcome assessment, which reduced the likelihood of any major bias. Air pollution constitutes
a complex mixture of pollutants, which may have strong correlations between each other especially
when emitted from the same types of sources, such as traffic and heating. We present results from
single-pollutant and two-pollutant models to quantify the independent effects of the main air pollutants.
The potential problem of collinearity was reduced by fitting only one pollutant from each main source
in the model, traffic (PM2.5, NO2, or CO), heating (PM10 or SO2), and O3 as a secondary pollutant.

Both weight and gestational age of the infant, that are relevant for the outcome assessment,
were based primarily on self-report. For accuracy, any information missing was retrieved from the
baseline data collection at the Birth Clinic and the Finnish Medical Birth Registry. The weight and
gestational age of any child was taken and recorded in the hospital immediately after delivery, and this
was reported into the database of the Finnish Medical Birth Registry and marked on the card that each
mother receives in Finland during their pregnancy. The gestational age was estimated using the last
menstrual cycle in combination with the findings in the ultrasound examination.

Low birth weight can be considered an indicator of disturbance in fetal growth and development
that is caused by genetic factors and/or environmental exposures during pregnancy. The WHO has
used a birth weight of less than 2500 g as an indicator of prematurity since 1948 [4]. This cut point
was introduced in Finland by professor of pediatrics Arvo Ylppö already in 1919, because gestational
age-based measurements were considered inaccurate. He presented that babies with low birth weight
should receive special care. There is evidence that, in populations with good nutritional status,
the traditional cut point may not be a sufficiently sensitive indicator for identifying fetal growth
disturbance and related health risks at birth or later in life. In a study of 1,372,092 singleton births in
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seven western countries including Finland, Sweden, Norway, Denmark, Scotland, the Netherlands,
and Flanders in Belgium, the risk of perinatal death increased substantially with birth weights from
2500 g to 3000 g [40]. Our choice of birth weight less than 3000 g as a cut point for low birth weight in
these populations is a more sensitive and thus better indicator of health risk than the traditional cut
point of 2500 g. Therefore, we have presented the primary results using LBW3000, but for comparison,
we also conducted sensitivity analyses using LBW2500 as the outcome.

Our study has several strengths. First, we used GIS-based exposure assessment data to estimate
the weather conditions and air pollutant concentrations for each participant mother. We were able
to geocode all respondents’ residential addresses using the home coordinates obtained from the
Population Register Center over the study period, and we were able to use this information in the
exposure assessment as it was utilized in the modelling. In addition, we were able to get all mothers’
residential addresses during the entire pregnancy rather than relying solely on the mothers’ address at
the time of delivery. The measurement of the outcome of interest (i.e., LBW) was obtained from the
birth registry, which is a very reliable source in the studied area.

We were able to adjust in the models for several potential confounders, including maternal age,
family socioeconomic status, gender, maternal smoking during pregnancy, environmental tobacco
smoke exposure of the pregnant mother, single parenthood, and season of birth. We were unable
to adjust for some other potentially important confounders, such as maternal alcohol consumption,
income, maternal medical history, ethnicity/race, indoor exposures, and occupational exposures both
indoors and outdoors. However, since we adjusted for family socioeconomic status, it is likely to cover
a major part of the potential influence of these missing covariates. However, a potential limitation of
our study is that we could not adjust for other covariates such as maternal nutrition, parity, caffeine
and drug consumption, mother’s activity during pregnancy, and mother’s BMI.

4.3. Synthesis with Previous Knowledge

Our results provide evidence that maternal exposure to carbon monoxide (CO) is associated
with an increased risk of LBW in infants. The effect was stronger among babies who were born
during the spring–summer season and in the presence of high exposure to O3. These findings are
consistent with the result from a study conducted by Maisonet et al. [11] in the US. They reported
an adjusted OR of 1.31 (95% CI: 1.06–1.62) per 1 ppm increase in average exposure to CO during
the 3rd trimester. A population-based retrospective study conducted in Brazil [41] also found an
association between the fourth quartile exposure to CO during the entire pregnancy and the risk of
LBW (1.33 95% CI: 0.93–1.90). In a systematic review and meta-analysis conducted by Stieb et al. [9],
a statistically significant association between maternal exposure to CO and risk of LBW was reported
with a summary OR of 1.07 (95% CI: 1.02–1.12) per 1 ppm. In a case-control study conducted in
Peru [42], maternal exposure to CO was associated with low birth weight with an adjusted OR of 3.53
(95% CI 0.95–13.23) per ≥3.82 ppm increase in exposure.

Several epidemiological studies have investigated the association between ambient particulate
matter and adverse pregnancy outcomes (including LBW); the results of these studies have been
summarized in several meta-analyses. In Lamichhane et al. (2015) [43], birth weight measured as
a continuous outcome was negatively associated with 10 µg/m3 increase in PM10 (−10.31 g, 95% CI:
−13.57 to −3.13 g) exposure during the whole pregnancy. Pedersen et al. [12] compiled data from
14 prospective birth cohorts involving 12 European countries (European Study of Cohorts for Air
Pollution Effects (ESCAPE)). An increase of 5 µg/m3 in prenatal exposure to PM2.5 and PM10 was
associated with an 18% (1.18; 95% CI: 1.06–1.33) and 16% (1.16; 95% CI: 1.00–1.35) increased risk of
LBW, respectively. Even exposures to PM2.5 concentrations below the minimum recommended level
by the European Union were associated with an increased risk of LBW [12]. Our study showed a 9%
(1.09; 95% CI: 0.79–1.50) and a 3% (1.03; 95% CI: 0.74–1.43) increase in the risk of LBW in the highest
quartile of exposure to PM2.5 and PM10 among babies born during the warm season. Our result is
consistent with a meta-analysis including 14 original studies conducted by Sapkota et al. [14]. Their
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result suggested a 9% increase in the risk (1.09; 95% CI: 0.90–1.32) related to a 10 µg/m3 increase in
PM2.5 exposure and 2% increase in the risk (1.02; 95% CI: 0.99–1.05) related to a 10 µg/m3 increase
in PM10.

We found no evidence of any effect related to exposure to NO2. Our analyses showed an RR of
1.00 for LBW (95% CI: 0.78–1.28) in relation to NO2 exposure after adjusting for potential confounders
during the whole pregnancy. The Norwegian Mother and Child Cohort Study (MoBa) conducted by
the Norwegian Institute of Public Health [44] reported a significant negative association between NO2

and LBW. This result is consistent with our results and with the results from Stieb et al. [45].
We provided evidence that high exposure to O3 increases the risk of LBW2500 in all babies and

the risk of LBW3000 among the babies who were born in the warm season (March–August) but not
among the babies who were born in the cold season. Our results are consistent with the findings by
Chen et al. [46]. The Brisbane study with a study period of over 10 years found a similar effect in the
single-pollutant model for ozone. They assessed the potential effects of air pollution on birth outcomes
applying Cox’s proportional hazards model that provides hazard ratios (HRs) and 95% confidence
intervals (95% CI) associated with an interquartile range (IQR) increase in each pollutant.

We found that high levels of PM2.5 and O3 exposures during entire pregnancy increase the risk of
LBW3000 synergistically showing an excess risk of 280% above an additive effect among babies born in
the spring and summer seasons. This result is consistent with our previous study on air pollution and
PTB [15] in which we found a 230% excess risk in PTB. According to our literature search, this study is
the first one that estimates the joint effects of air pollutants on the risk of LBW.

4.4. Biological Plausibility

Studies that have accumulated over the recent years have shown that development and
maintenance of good uteroplacental circulation in the pregnant mother is a major precondition
for a healthy pregnancy outcome, as the latter is highly dependent on a well-working placenta. Healthy
placenta can transfer enough oxygen and nutrients that are required for healthy fetal development
and energy transfer from the maternal body to the fetus [47,48]. Developing fetuses are especially
vulnerable to adverse effects of environmental pollutants because prenatal exposure to toxic and
irritant pollutants can cause inflammation in the fetal lungs [49]. However, the mechanisms underlying
many of the adverse effects on fetuses related to air pollutants remain so far unclear. NO2 and SO2

exposures are considered to have some toxic effects on the functional and developmental growth of
exposed fetuses. The mechanisms underlying such an effect include stimulation of the formation of
cell-damaging lipid peroxides and reduction of the maternal antioxidant reserves [50,51].

The effects that both particulate matter and carbon monoxide have on birth weight have been
reported and explained by transfer of these pollutants from the mother to the lungs of the growing fetus
via the placenta [52]. The amount of oxygen available in the placenta for the fetus will be compromised
if an increased amount of CO reduces the oxygen-carrying capacity of maternal hemoglobin, which is
responsible for delivering oxygen into the fetal circulation [53,54]. Maternal exposure to PM has been
reported to cause oxidative stress in the mother, leading to pulmonary and placental inflammation,
which alters blood coagulation factors, and this triggers hemodynamic responses. The latter, in turn,
reduce birth weight through impaired transplacental oxygen and nutrient exchange [55]. PM can also
cause oxidative inflammation in the lungs of the mother and placenta, and such inflammation may
lead to reduction in the fetal growth [56].

Concerning inflammatory responses, particulate matter inhaled by the mother can induce a
strong adverse reaction in the maternal body. It has been reported that PM2.5—fine granulate PM—
becomes enriched in the maternal blood stream when inhaled or ingested and moves through the
placenta into the embryo, where it can seriously interfere with embryonic development. It can cause
apoptosis and interfere with apoptotic pathways that are active during embryonic development [57].
In general, there are three different pathways. One is extrinsic and mediated through “death receptors”,
i.e., directed through influence outside of the cells and the tissues; the second one is intrinsic and
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involves mitochondria; and the third one is intrinsic as well, based on cellular stressors that affect the
endoplasmic reticulum (ER). Using primary fetal alveolar cells, Che et al. (2014) [58] demonstrated
that exposure of these cells to fine particulate matter, contained in cooking oil fumes, can upregulate
proapoptotic signaling mediators and can downregulate antiapoptotic ones. Specifically, the extrinsic
death receptor pathway and the intrinsic mitochondrial pathways were activated [58]. In another
study, cultured rat embryos experienced growth retardation when exposed to PM2.5. The authors
found both an activation of apoptotic pathways as well as cell cycle arrest between G0 and G1 phase
and provided evidence that reactive oxygen species (ROS), JNK, and ERK signaling was also involved
in these processes; this led not only to a shortening in the embryo’s length and reduction of the yolk
sac diameter but also to a reduction in the number of somites [59].

5. Conclusions

The present study provides new evidence that prenatal exposure to air pollutants in a cold climate
increases the risk of LBW at relatively low levels of air pollution. Our results strengthen the evidence
of independent effects of CO and O3 exposures on the risk of LBW. Our study shows, for the first time,
synergistic adverse effects of air pollutants on fetal growth. Our results also indicate the presence of
season-specific effects. From the public health perspective, our findings of independent and synergistic
adverse effects of low-level air pollution on low birth weight is alarming and underlines the need to
reduce air pollution worldwide.
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Appendix A

Table A1. The effect of air pollution exposure during entire pregnancy per 10 unit increase in
concentration on low birth weight less than 3000 g (N = 2517), The Espoo Cohort Study, 1984–1990.

Single Pollutant
Model

Low Birth Weight <3000 g Born in Spring–Summer Born in Autumn–Winter

Cr. RR
(95% CI)

Adj. RR
(95% CI)

Cr. RR
(95% CI)

Adj. RR
(95% CI)

Cr. RR
(95% CI)

Adj. RR
(95% CI)

PM2.5 per 10 ug/m3 0.92
(0.72–1.16)

0.91
(0.71–1.16)

0.95
(0.69–1.33)

0.95
(0.68–1.32)

0.86
(0.60–1.23)

0.86
(0.60–1.23)

PM10 per 10 ug/m3 0.93
(0.75–1.14)

0.92
(0.74–1.14)

0.96
(0.71–1.28)

0.95
(0.71–1.28)

0.88
(0.65–1.21)

0.88
(0.64–1.21)

O3 per 10 ppb 0.84
(0.58–1.24)

0.79
(0.51–1.25)

0.98
(0.53–1.80)

0.98
(0.53–1.80)

0.64
(0.34–1.22)

0.62
(0.33–1.19)

NO2 per 10 ppb 0.89
(0.37–2.12)

0.91
(0.37–2.20)

0.87
(0.25–2.98)

0.89
(0.25–3.13)

0.90
(0.26–3.12)

0.91
(0.26–3.20)

CO per 10 ppb 1.00
(0.98–1.02)

1.00
(0.98–1.02)

1.01
(0.98–1.04)

1.01
(0.98–1.04)

0.99
(0.96–1.02)

0.99
(0.96–1.02)

SO2 per 10 ppb 0.94
(0.54–1.63)

0.94
(0.54–1.65)

0.90
(0.42–1.94)

0.90
(0.42–1.94)

0.98
(0.43–2.21)

0.98
(0.43–2.21)
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Table A2. The effect of air pollution exposure during entire pregnancy by comparing the exposure
levels below and above the median values on low birth weight less than 3000 g (N = 2517), The Espoo
Cohort Study, 1984–1990.

Single and
Multipollutant Models

Low Birth Weight <3000 g Spring–Summer (Warm Season) Autumn–Winter (Cold Season)

Crude RR
(95% CI)

Adjusted RR
(95% CI) 1

Crude RR
(95% CI)

Adjusted RR
(95% CI) 2

Crude RR
(95% CI)

Adjusted RR
(95% CI) 2

PM2.5(Q3 ≥ 19.5 µg/m3)
0.99

(0.80–1.22)
0.98

(0.79–1.22)
1.09

(0.81–1.48)
1.12

(0.82–1.53)
0.88

(0.65–1.21)
0.87

(0.63–1.19)

PM10(Q3 ≥ 21.15 µg/m3)
1.04

(0.84–1.29)
1.04

(0.84–1.29)
1.10

(0.81–1.49)
1.14

(0.83–1.55)
0.98

(0.72–1.34)
0.97

(0.71– 1.32)

NO2 (Q3 ≥ 4.41 ppb) 0.94
(0.76–1.17)

0.96
(0.77–1.19)

0.95
(0.71–1.28)

0.98
(0.72–1.32)

0.93
(0.69–1.27)

0.94
(0.69–1.29)

CO (Q3 ≥ 295.97 ppb) 0.92
(0.75–1.14)

0.94
(0.76–1.17)

1.00
(0.74–1.35)

1.03
(0.76–1.39)

0.84
(0.62–1.15)

0.86
(0.63–1.17)

SO2 (Q3 ≥ 3.75 ppb) 1.01
(0.81–1.25)

1.02
(0.82–1.26)

1.04
(0.77–1.41)

1.08
(0.80–1.47)

0.97
(0.71–1.32)

0.96
(0.71–1.32)

O3 (Q3 ≥ 23.93 ppb) 0.91
(0.73–1.13)

0.89
(0.69–1.14)

1.07
(0.76–1.49)

1.08
(0.77–1.52)

0.74
(0.53–1.04)

0.73
(0.52–1.02)

Note: All estimates are from Poisson regression models. CI, confidence interval; CO, carbon monoxide; NO2,
nitrogen dioxide; O3, ozone; PM2.5, particulate matter with a diameter up to 2.5 micrometers; PM10, particulate
matter with a diameter up to 10 micrometers; ppb, parts per billion; RR, Risk Ratio; SO2, sulfur dioxide; and µg/m3,
microgram per cubic meter. 1 Adjusted for season of birth and other confounders (including gender, maternal
age, family socioeconomic status, maternal smoking during pregnancy, environmental tobacco smoke exposure
of pregnant mother, and single parenthood); 2 adjusted for gender, maternal age, family socioeconomic status,
maternal smoking during pregnancy, environmental tobacco smoke exposure, and single parenthood.

Table A3. The effects of air pollution exposure during entire pregnancy on low birth weight less than
2500 g (N = 2517), The Espoo Cohort Study, 1984–1990.

Single and
Multipollutant Models

Low Birth Weight <2500 g Spring–Summer (Warm Season) Autumn–Winter (Cold Season)

Crude RR
(95% CI)

Adjusted RR
(95% CI) 1

Crude RR
(95% CI)

Adjusted RR
(95% CI)2

Crude RR
(95% CI)

Adjusted RR
(95% CI)2

PM2.5(Q4 ≥ 22.1 µg/m3) 3 1.42
(0.91–2.21)

1.39
(0.88–2.20)

2.31
(1.29–4.15)

2.31
(1.28–4.16)

0.67
(0.28–1.57)

0.56
(0.22–1.43)

(PM2.5 + O3) 1.65
(1.04–2.61)

1.56
(0.98–2.48)

2.99
(1.62–5.53)

2.69
(1.46–4.95)

0.69
(0.29–1.65)

0.59
(0.23–1.51)

(PM2.5 + SO2) 1.09
(0.55–2.15)

1.05
(0.52–2.11)

2.69
(1.06–6.83)

2.45
(0.94–6.37)

0.41
(0.14–1.17)

0.34
(0.11–1.07)

PM10(Q4 ≥ 24.1 µg/m3) 3 1.30
(0.83–2.04)

1.26
(0.79–2.00)

2.05
(1.14–3.68)

2.00
(1.11–3.62)

0.63
(0.27–1.49)

0.54
(0.21–1.37)

(PM10 + CO) 0.73
(0.39–1.35)

0.71
(0.38–1.32)

0.65
(0.29–1.46)

0.60
(0.26–1.35)

0.64
(0.23–1.81)

0.57
(0.19–1.72)

(PM10 + NO2) 1.15
(0.57–, 2.31)

1.08
(0.52–2.25)

2.39
(0.88–6.48)

2.32
(0.82–6.60)

0.50
(0.17–1.51)

0.42
(0.13–1.35)

NO2 (Q4 ≥ 5.1 ppb) 3 1.31
(0.83–2.05)

1.30
(0.81–2.06)

1.69
(0.94–3.06)

1.69
(0.93–3.09)

0.92
(0.43–1.97)

0.85
(0.38–1.92)

(NO2 + PM10) 1.18
(0.58–2.37)

1.22
(0.58–2.55)

0.83
(0.30–2.26)

0.83
(0.29–2.40)

1.40
(0.53–3.69)

1.46
(0.52–4.07)

(NO2 + SO2) 0.81
(0.38–1.73)

0.78
(0.35–1.73)

1.08
(0.37–3.14)

0.88
(0.27–2.83)

0.57
(0.18–1.76)

0.58
(0.18–1.87)

CO (Q4 ≥ 329.7 ppb) 3 1.80
(1.18–2.76)

1.81
(1.17–2.80)

3.40
(1.87–6.18)

3.53
(1.93–6.48)

0.76
(0.34–1.69)

0.67
(0.28–1.59)

(CO + O3) 2.01
(1.30–3.10)

1.94
(1.25–3.03)

4.20
(2.28–7.76)

3.92
(2.11–7.30)

0.78
(0.34–1.75)

0.69
(0.29–1.64)

(CO + PM10) 2.23
(1.24–4.01)

2.27
(1.26–4.09)

4.64
(2.04–10.55)

5.16
(2.24–11.89)

0.97
(0.37–2.56)

0.91
(0.33–2.56)

(CO + SO2) 1.90
(1.00–3.60)

1.88
(0.99–3.57)

6.10
(2.70–13.76)

5.93
(2.59–13.58)

0.49
(0.18–1.37)

0.45
(0.16–1.33)

SO2 (Q4 ≥ 4.7 ppb) 3 1.52
(0.98–2.35)

1.51
(0.96–2.36)

1.83
(1.02–3.29)

1.92
(1.06–3.49)

1.22
(0.61–2.47)

1.12
(0.54–2.34)

(SO2 + O3) 1.82
(1.15–2.89)

1.75
(1.10–2.80)

2.35
(1.27–4.36)

2.34
(1.26–4.35)

1.33
(0.64–2.76)

1.23
(0.57–2.65)

(SO2 + PM2.5) 1.42
(0.73–2.79)

1.45
(0.73–2.90)

0.83
(0.32–2.11)

0.92
(0.35–2.42)

2.04
(0.86–4.84)

2.03
(0.83–4.93)

(SO2 + CO) 0.93
(0.48–1.80)

0.94
(0.49–1.82)

0.46
(0.20–1.02)

0.50
(0.22–1.12)

1.89
(0.77–4.62)

1.78
(0.71–4.43)

(SO2 + NO2) 1.79
(0.86–3.74)

1.83
(0.85–3.95)

1.72
(0.59–4.98)

2.14
(0.67–6.85)

1.84
(0.65–5.20)

1.64
(0.57–4.70)



Appl. Sci. 2020, 10, 6399 14 of 18

Table A3. Cont.

Single and
Multipollutant Models

Low Birth Weight <2500 g Spring–Summer (Warm Season) Autumn–Winter (Cold Season)

Crude RR
(95% CI)

Adjusted RR
(95% CI) 1

Crude RR
(95% CI)

Adjusted RR
(95% CI)2

Crude RR
(95% CI)

Adjusted RR
(95% CI)2

O3 (Q4 ≥ 26 ppb) 3 1.68
(1.09–2.59)

1.89
(1.14–3.14)

4.47
(2.21–9.02)

4.03
(1.96–8.28)

1.22
(0.68–2.18)

1.24
(0.68–2.24)

(O3 + PM2.5) 1.89
(1.21–2.96)

2.05
(1.22– 3.44)

6.24
(2.99–13.03)

4.95
(2.33–10.49)

1.16
(0.64–2.09)

1.15
(0.63–2.10)

(O3 + CO) 1.90
(1.22–2.95)

2.05
(1.23–3.43)

6.36
(3.09–13.11)

4.82
(2.29–10.17)

1.19
(0.66–2.14)

1.20
(0.66–2.18)

(O3 + SO2) 1.97
(1.25–3.11)

2.16
(1.28–3.64)

5.78
(2.77–12.08)

4.99
(2.35–10.61)

1.29
(0.70–2.37)

1.29
(0.69–2.41)

Note: All estimates are from Poisson regression models. CI, confidence interval; CO, carbon monoxide; NO2,
nitrogen dioxide; O3, ozone; PM2.5, particulate matter with a diameter up to 2.5 micrometers; PM10, particulate
matter with a diameter up to 10 micrometers; ppb, parts per billion; RR, Risk Ratio; SO2, sulfur dioxide; and µg/m3,
microgram per cubic meter. 1 Adjusted for season of birth and other confounders (including gender, maternal
age, family socioeconomic status, maternal smoking during pregnancy, environmental tobacco smoke exposure
of pregnant mother, and single parenthood); 2 adjusted for gender, maternal age, family socioeconomic status,
maternal smoking during pregnancy, environmental tobacco smoke exposure, and single parenthood.

Table A4. Joint effect of CO and O3 and of PM2.5 and O3 during entire pregnancy on low birth weight
less than 2500 g, The Espoo Cohort Study, 1984–1990.

CO Entire
Pregnancy

O3 Entire
Pregnancy n/N % of LBW

<2500 g
Crude RR
(95% CI)

Adjusted RR
(95% CI) 1 ERR (95% CI) 1 RERI (95% CI) 1

Low (<Q4) Low (<Q4) 37/1351 2.74 1 1

High (>Q4) Low (<Q4) 21/545 3.85 1.41
(0.83–2.38)

1.34
(0.80–2.26)

0.31
(−0.20–1.16)

Low (<Q4) High (>Q4) 19/532 3.57 1.30
(0.76–2.25)

1.41
(0.73–2.70)

0.41
(−0.27–1.70)

High (>Q4) High (>Q4) 13/89 14.61 5.33
(2.94–9.66)

5.75
(2.87–11.54)

4.75
(1.87–10.54)

4.03
(1.61–9.28)

PM2.5 Entire
Pregnancy

O3 Entire
Pregnancy

Low (<Q4) Low (<Q4) 38/1327 2.86 1 1

High (>Q4) Low (<Q4) 20/569 3.51 1.23
(0.72–2.09)

1.15
(0.68–1.95)

0.15
(−0.32–0.95)

Low (<Q4) High (>Q4) 23/559 4.11 1.44
(0.86–2.39)

1.56
(0.83–2.92)

0.56
(−0.17–1.92)

High (>Q4) High (>Q4) 9/62 14.52 5.07
(2.57–10.01)

5.24
(2.53–10.87)

4.24
(1.53–9.87)

3.53
(1.19–8.70)
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