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ABSTRACT

This study is concerned with a transport process in the membrane ion channel, which is

complicated by the presence of protein walls. The walls of actual biological channels

have complicated shape geometries. These geometries pose a serious problem for

calculation of electrical forces acting on an ion in the channel. Since proteins forming the

channels have a low dielectric constant (2) compared to the water (80) in which ions

move, the channel boundary plays a significant role in determining the electric forces.

This interaction between ions and electric forces determines many of the properties of ion

channel. In this respect, analytical solutions satisfying the Dirichlet boundary conditions

for cylindrical and toroidal boundaries are presented. It appears that for realistic studies

of ion transport in biological channels these geometries can describe the channel more

accurately and the model system offers us the ability to reduce complex biological

systems to the form that can be treated theoretically.
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Introduction

understanding how a biological system uses physical laws to perform the

function. Most of the biological systems have complex structures and, in most

of the cases, it can be difficult to recognize the physical laws associated with

them. This work is an attempt to look at membrane channels and their

geometries, which are crucial component in shaping the electrical properties of

the nervous system.

It focuses on a prototype channel geometry for acetylcholine receptor

channel. We study simplified realistic model geometry for Ach receptor

channels in which analytical tractable solutions to the Poisson’s and Laplace’s

equations can be obtained. This will allow us to examine the conductance of

ions and associated membrane potentials.

In chapter one, we present the biological background to the thesis. Then

in chapter two,

potential of ACh channels in particular. In chapter three, we present

justification for our approach. In chapter four, we introduce our mathematical

model. Chapter five is devoted to biological implications and outlook

1

we discuss the physics of biological channel and electrostatic

Understanding the function of any biological systems means
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CHAPTER ONE

BIOLOGICAL BACKGROUND

1.1 Introduction

Membranes perform many functions. They physically and chemically

isolate cells from their environments. Membranes control the passage of solutes

and water between the inside and outside of the enclosed cells. To do that,

membranes house a variety of channels, carries, and pumps whose transport

properties are controlled by several classes of physicochemical variables and

house signaling molecules by which intracellular sites can receive signals

present in extracellular environment without the signal-carrying molecules

entering the cell.

Living organisms - from simple, single-cell organisms such as bacteria

to complex, multicell organisms such as humans - exchange matter with their

external environment. Organisms take up nutrients and excrete waste products.

Single-cell organisms

contact with external environment, but rather are in contact with the internal

environment. The internal environment consists of interstitial fluids that

2

environments. However most cells of complex organisms are not in direct

are modulated by signaling molecules such as hormones. Membranes also

extract nutrients directly from their external
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communicate with blood and lymph. Complex systems have elaborate organ

systems that are in contact with both the external and internal environments

(respiratory system, digestive system, circulatory system). For instance, the

purpose of the digestive system is to break down the food into building block

molecules - such as amino acids, monosaccharides, fatty acids, etc. - that are

usable by cells. It is difficult to underestimate the importance of membrane

transport mechanisms.

1.2 Cell Membrane Structure

so A -I

•y 60 A

140 A

Fig. 1.1 Structure of the nicotinic ACh receptor.
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The structure is from image reconstruction analysis, employing electron

microscopy.(Siegel G.,et al., 1991)

Membranes are composed of lipid bilayers and partially

Lipid bilayers are freely permeable to water and small nonpolarproteins.

oxygen (O) and nitrogen (N), but impermeable to ions.molecules, such as

Ions can pass through the membrane only via special proteins molecules

embedded in it. Ion channels form one group of those proteins; they permit

rapid flow of ions across the membrane. Ion channel contains a central pore

side of the membrane to the other. This arrangement allows ions to flow

through channels at rates up to 100 million ions per second when it is open.

Ion channels vary considerably in their gating, by which we mean the

Some channels are opened byfactors that make them open or close.

neurotransmitters or cytoplasmic messenger molecules. Others are opened by

changes in the voltage across the membrane, and yet others by sensory stimuli

of various kinds.

Channels show selectivity in the ions that permeate. Some of them

permit only particular ions, such as sodium, potassium, calcium or chloride

4

that can be opened by conformational change to allow ions to flow from one

combination with particular chemicals outside or inside the cell, such as

or fully integrated
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ions. Others are selective for a broader group of ions such as monovalent

cations, or cations in general.

conceptually distinct from one another. Molecular structure studies confirm this

view: parts of the channel molecule concerned with gating seem to be separate

from those concerned with selectivity. Transmitter-gated channels are quite

different from voltage-gated channels and their relatives. They show little or no

sequence similarity and have distinct structures.

The first channel to be studied in detail was the nicotinic ACh receptor

(‘nAChR’, or simply”AChR’). Nicotinic ACh receptors are expressed in

postsynaptic membranes of skeletal muscle fibers, in neurons throughout the

activated by ACh released fromnervous system.The receptors are

presynaptic nerve terminals, and on activation they too form channels

through which cations can enter or leave the postsynaptic cell. They are

designated ‘nicotinic’ to reflect the fact that the actions of ACh are mimicked

by nicotine, and to distinguish them from the very different ACh

be activated by muscarine. Muscarine

receptors are not ion channels; instead their activation sets in motion

intracellular messenger systems that, in turn, affect ion channel activity.

5

These two aspects of channel functioning, i.e gating and selectivity, are

receptors (mAChRs), that can
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The size and the orientation of intact channel with respect to the lipid

determined by the high-resolution microscope imaging, andmembrane is

domain, and about 11 nm long. Thepoint, which is in the extracellular

membrane. The central pore is about 0.7 nm in diameter.

1.3 Electrostatic Potential in the ACh Channel

In general, the interior of a cell has a lower potential than the exterior.

The lower potential makes it electrically negative to the exterior. This potential

difference, which ranges between -20 and -200 mV for different cell types is

termed the resting potential, Changes in the resting potential elicit important

changes in the excitability of cells.

Within the channel, the potential is determined not only by the resting

potential of the cell, but also by the interaction between ions passing through

the channel, The electric potential profile determines many key properties of

the channel such as gating and ion selectivity (Kuyucak et.al, 1998). In the

ACh channel, for example, selectivity is mainly determined by the presence of

fixed charges in the constricted section of the channel. Typically, ion channels

have excess charges on the proteins walls that contribute to the determination

6

other physical techniques. The molecule is about 8.5 nm across at its widest

extracellular portion extends about 5 nm above the surface of the
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of their selectivity properties. In the ACh channel, fixed charges are located in

located near the constricted sections of the channel (Unwin, 1989). The fixed

charges contribute to the presence of an energy barrier in the narrow,

constricted section of the channel and play a key role in the ion-selectivity

property. Apart from interacting forces made up of induced charges, ion-ion

random activation of the groups of synapses, which in turn elicit action

potentials. An action potential is initiated, for example, when a synaps

due to chemical influx. When ions

permeate the ACh channel, the potential difference across the membrane

could be increased or decreased, depending on the polarity of the ions.

In the ACh channel, sodium and potassium are the main chemicals that cause

potential difference that triggers depolarization. The channel potential is thus

generated by the differences in the ionic makeup of the intracellular and

extracellular fluids.

With this brief biological background, we shall consider the physics of

biological channels in the next chapter.

7

the protein wall (Kuyucak et al, 1998). Structural studies suggest that they are

interaction, ion-solvent interaction and Van der Waals forces, there is also a

group of synapses is activated

or a

changes in potential. The influx of sodium ions leads to a decrease in the
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CHAPTER TWO

THE PHYSICS OF BIOLOGICAL CHANNELS

2.1 Introduction

Molecular biophysicists strongly believe that the function of ion

channels is a consequence of a molecular structure. It should be possible to

predict the electrophysiology of an ion channel precisely if one knows the

structure and its relationship to the surrounding membrane and electrolyte.

complicated structure with many degrees of motional freedom. The smallest

known ion channel, gramicidin, contains just 30 amino acids, and has a

precisely known structure. To do a molecular dynamics simulations of ion

permeation for a gramicidin channel, i.e. to see enough ions go through the

channel to get a direct measure of the current voltage (I-V) curve, one would

need to simulate about one-tenth of a microsecond, or about 100,000h of CPU

time (Jacobsson E.,1998). This is obviously an impractically large amount of

time with present technology and with technology available in the foreseeable

future. To overcome this obstacle to direct simulations, it is necessary to use

statistical mechanics combined with simulations to structure the problems into

8

However, even such a small biological system as a single ion channel is a
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hierarchies of descriptions at different levels of detail. Probably following this

idea, in the last 10-15 years the field of ion channels has entered the rapid

phase of development. Despite this development, some of the outstanding

questions about how biological channels work remain unanswered. The first

an open channel. Secondly, all biological ion channels are selectively

permeable to a specific ion. This selectivity mechanism needs to be understood

in terms of the interactions of the permeating ions with the surrounding water

and protein molecules. Thirdly, what determines the upper-limit in channel

conduction? To be functionally effective, a channel must process a large

number of ions, but at the same time, it has to be highly selective to specific

ionic species. What kind of structural changes take place when the channel

makes transitions from the close conformation to the open conformation?

Finally, the tertiary structure of all known ionic channels needs to be

determined. The advance in the studies of ion channels has been brought about

by the combined efforts of experimental and computational biophysicists. As

new analytical methods have been developed and the available computational

power increased, theoretical models of ion permeation have become

increasingly sophisticated. Now it has become possible to relate the atomic

structure of an ion channel to its function, through the fundamental laws of

9

question details dynamical processes underlying the permeating of ions across
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physics operating in electrolyte solution.

2.2 Kinetic and Thermodynamic Approach to Membrane Transport

Properties

The living cell requires for its proper functioning materials that originate

outside the cell; and as a result of its functioning produces materials that leave

the cell. The passage of molecules across the cell membrane is known in many

cases to be a purely diffusive process. There are examples of so-called active

of energy obtained from chemical processes

to drive molecules across membranes So, a molecule as biological system

means death. Since diffusion is an example of the approach to equilibrium, a

system in which diffusion is observed cannot be at equilibrium. It follows that

the use of classical thermodynamics is theoretically suspect. Non-equilibrium

thermodynamics is the theory that addresses itself specifically to the

relationship between flows and thermodynamic parameters and often provides

conditions under which other theories must comply.

According to non-equilibrium thermodynamics, the force acting on a

single ion i in a continuous system is the negative gradient of its

electrochemical potential i.e, -V/z, where /zjs the z-th electrochemical potential.

10

transport, which involves the use

never rests; it is never in equilibrium. Equilibrium for any biological system
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However, if the particles have an electric charge and if they are subjected to

electric potential gradient, transport will arise from two physicalan

mechanisms: diffusion due to a particle concentration gradient and drift

(also called migration ) due to an electric potential gradient. The Nemst-

Planck equation ( sec.2.3 ) expresses the current density of the species of the

charged particles in terms of the concentration and potential gradient. If the

species of the charged particles is conserved, then the current density and

concentration of the particle are also linked to

Finally, the concentrations of all the charged particles in electrodiffusion are

linked to the electric potential via Poisson’s equation. We describe below

Nemst-Planck equation and related equations used in modeling the flow of ions

through channels.

2.3 The Nemst-Planck Equation

The particles in the medium are scattered because their thermal kinetic

energy causes collisions with particles of the medium. The collision process

causes no net velocity of each particle, but does cause the net flux of

particles down their concentration gradient .From Fick’s first law of

diffusion, we have

11

a continuity equation.
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(2-1)

where D = , with I and T as the mean free path and the mean free

body force in a

positive x-direction, implying that between collisions the particles will be

accelerated in the x-direction. The acceleration causes an increase in velocity

in the x-direction during the interval between collisions. This drift velocity is

V = uf, where f is the force of a mole of particles and u is the molar

mechanical mobility. The flux of particles due to their drift is

(2.2)

Suppose the particles are charged with valence and the bodyz

field intensity

is an electric potential. Then the force

expected on a mole of particles is f = zFdy/ldx , where F is a

Faraday’s constant (the charge on a mole of univalent particles), which

is about 9.65 104 C/mol. In this case, we can rewrite equation (2.2) as

(2-3)

12

Adrift

ft diffusion

2 / 
/2r

time, respectively. Suppose that particles also experience a

-cuzF 
dx

e = -d if/ / dx , where

dx

hrijl = CV =Cuf

electric field with electricforce is caused by an
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The kinetic model of the motion of a particle suggests that the

of the drift andinstantaneous velocity of each particle is the sum

diffusion velocities. Therefore , it is reasonable to conclude that the net

flux of particles is the sum of that caused by drift and diffusion.

For any ion species n, the flux due to diffusion and the drift is

(2.4)

is the diffusion coefficient, is the concentration of ions,where

the mobility, and zn is the valence of the n-th ion. Theis

dimensions are as follows, d^(xj/)dx is the potential gradient in N!C\znF

in C/mol; znF(dy/ (xni)/dx) is theis the charge of a mole of ion n

mole of particles in N/mol; thea

velocity of the particles in m/s; and the flux is the product of the

velocity and the concentration (T. F. Weiss, 1996).

is related to the flux by

(2.5)

Substituting eqs. (2.1) and (2.3) into eqn (2.5) yields

13

dx~U~ZnFcn(XA
drift”

( ^,,(*10

Diffusion

n n

Cn

Un

nF4>n{X^

The current density Jn(x,f) in A!cm1

force on (x„t)/dx) is
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+ Un ZnFcA*,t) (2.6)

This equation is known as the Nemst-Planck equation of

electrodiffusion The Nemst-Planck equation can be expressed in several useful

Nemst-Planck equation can be expressed as

Fc„(x,< (2.7)

which can be rearranged to yield an expression in terms of the logarithmic

derivative of concentration

J n (X » 0 ~ (2.8)n

2.4 The Electrochemical Potential

The Nemst-Planck equation can also be expressed as

(2.9)

where

14

dy/ (x

dx

dx

dx

Jn{X^)=-UnZ.

and equivalent forms. Using the Einstein relation , Dn = u

n

" dx

~unznFc „{x,t)^—(RT lnc„(x,/),+ z 
dx

+ znF
RT dc„(x„t) 

cn(x,t) dx

nRT, for example the

„Fy/(x,t))

JXx,t') = -znF\ D,
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(2.10)

Here

value at unit concentration and zero potential. Note that the two terms

that depend on solute concentration and potential are the stored chemical

energy and the stored electrostatic energy per mole, respectively.

Thus, the flux of ions and the current density carried by the ions

2.5 Conservation of Particles and Charge

If each ionic species is conserved, each ion will satisfy its own continuity

equation

(2.11)

If each of the particles is conserved, the charge on population of charge

particles will also be conserved. This result can be seen by summing the eq

(2.11) over all the charge species.

15

(x, t)=+ RT In cn (x/)+z,

dt

are proportional to the electrochemical potential gradient.

dx

H is the electrochemical potential, and is its reference
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Surface Area A

> j(x + Ax. r)
j(x,z)

_]/

X

Figure 2.1. Volume element used to derive concentration of change.

Consider the incremental volume element of cross-sectional area A and

width Ax with charge density and current density. Conservation of charge

implies that the net charge flowing into the volume element in a time

interval of duration Ar must equal the increase in charge in the volume

element. Therefore,

j(x, t)A At - j(x + Ax, t)AAt = p(x, t + At)Abx - p(x, t)AAx (2.12)

Rearranging the terms in the equation (2.12) and letting Ax —> 0 and At —> 0

yields

(2.13)

this in three dimension can be written as

16

dj(x,t) __ _dp(x,t) 
dx dt
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this in three dimension can be written as

(2.14)V.J

2.6 Poisson’s Equation

Poisson’s equation, which is derivable from Gauss’s law, links the

charge to electric potential as follows:

(2.15)

is the permittivity of the medium. The charge density consists of the two

terms: the mobile ionic charges or the fixed (immobile) charges in the

medium. Thus,

(2.16)

where pf is the fixed charge density.

electrodiffusion is completely specified by eqsAn system

(2.7),(2.11),(2.15) and (2.16). There are N Nernst-Planck equations linking

17

dp 
dt

N
p(x,t)= F^zncn(x,t)+ pf(x_t)

n=l

dx2 £

where p is the charge density (C/cm ), i// is the electric potential, and s
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If the ions are eachthe 2N+1 variables

conserved, then there will be an additional N continuity equations that link

equation (2.15). If the fixed charges are specified as a material property, and if

appropriate boundary conditions are specified, then these equations constitute

the complete specification of electrodiffusion problem; that is, there are 2N+1

variables and equations. These equations can be solved for the concentration

and current density of each of the mobile ions as well as the electric

potential. However, these equations can be nonlinear because of the term

Weiss, 1996).

2.7 Electrodiffusive Equilibrium Condition

From the

conditions at which the flux of the n-th ion is zero. If we set

in eq.(2.8) and if we recognize that at electrodiffusive equilibrium

all the variables are time independent, then we obtain the conditions

18

J„=0

Nemst-Planck equation we can directly determine the

these variables. The final relation linking the 2N+7 variables is Poisson’s

conditions that must apply at electrodiffusive equilibrium, i.e. the

c„(x,/)9^(x,r)/(ax) in eq.( 2.7), which complicates their solution. (T. F.
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(2.17)

ellectrodiffusive equilibriumsatisfy theThere are several toways

conditions. Three of these are trivial:

(i) if

diffuse.

(ii) if zw=0, which implies that the particles are uncharged and do not

carry a current even if they can diffuse.

= 0, which occurs if there are no particles. A more interestingn

can

divide these terms out of eq. (2.17) so that this condition is

= (2.18)

where (J = F/RT.

This condition can be integrated to yield

(2.19)

19

X 

lneu(x,oo)+y/(x,co) =0 
/

dy/(x, co) 
dx

rf(lnc„(x,°o)) 
dx

are fixed and cannot drift or

(iii) if

) = c

cn 0 . Then wecase occurs if Znun^0,

( RT
-u„z2F2(x,<»}— n n \ \ / i t-i

dx\ZnF

un =0, which occurs if the particles

(x))

s* 0 , and

Cn(x,co
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potential. Thewhere location x0 provides

gives the spartial distribution of charged particles inequation an

electrostatic field at electrodiffusive equilibrium.

2. 8 Electroneutrality.Charge Relaxation Time

The strong forces of attraction between oppositely charged ions in a

solution tend to neutralize the net charge in the solution. There is a

strong tendency for this charge neutralization to occur, and the resultant

property of the solution is called electroneutrality. How long will it take

for electroneutrality to be established? The charge relaxation time is the

measure of the time scale for establishing electroneutrality.

In an electrolytic solution with uniform composition the current

density is related to the electric field ( negative gradient of the electric

potential) according to Ohm’s law

J

is the electric conductivity of the medium.In a homogenious

conductor

20

= a ee 9 where 8 = -V ty

V • J = <tcV .8

a point of reference for a

where ae
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But Gauss’s law implies that V (c£,)= /?(/), where p(t) is the charge

(2.20)

If we substitute the equation for the continuity of charge eq. (2.13) into

eq. (2.20) under the assumption that the charge density is increased

uniformly in the solution, we obtain

which has the solution /?(/)= p (0 )e is the charge

relaxation time given by

8

e

Thus, for spatially uniform distribution of charge (so that no

diffusion takes place) the charge density relaxes exponentially to zero

and the charges move to the boundaries of the solution, i.e. they get as

possible. The time constant for thisfrom each other as

relaxation can be computed for the physiological saline solutions which is

21

d t

V J = a,V-e = ~p
8

+ ^-p(/)=o, 
£

Tr=~ 
(J

density (Clem3) at time /.Therefore,

far away

where
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0.7 nanoseconds.

2.9 The Debye Length

I n determining the debye length, we need to solve the Poisson

equation which is given as

(2.21)

is the permittivity. For each ion

the equilibrium condition is

zF W (x )/ RT-zF v(x)l RT and c  (x ) = Ce (2.22)

where we have assumed that y/(oo) = 0 , which is used as a reference

for the potential.(see eqs(2.18)and(2.19)). Eqs (2.21) and (2.22) are linked

by the equation

p(x) (2.23)

Now, substituting eq .(2.22) into (2.23) and the result into eq. (2.21), we

obtain the Poisson-Boltzman equation

(2.24)

22

d2ip 
dx2

P_
£

+ z_FcezF'f'{x}lRr)=

+ z_Fc_(x)

-L[z+FCe-z,?'l'{x}lRT

= z+Fc+(x)

zFipixf
RT ’

c + (x ) = Ce

2zFC . j ------- sinh
s 1

where p is the charge density and s

= 
dx1 E
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The Poisson-Boltzman equation can also be expressed in normalized

coordinates as

(2.25)= sinh

where

^(x)

is the normal potential.

is the normalized distance, and AD is called the Debye length and is

expressed as

Therefore, the Debye length is a measure of the spatial extent of

of a distance over which themeasure

electroneutrality is violated.

The Nemst-Planck equation is the starting point for many significant

23

^(*) 

RT/zF

sRT 
2z2F2C

d2y/(x) 
dX2

the potential distribution and a
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calculations in aquous solutions, in ion channels, and in semiconductor devices.

It is always necessary to integrate the differential equation for the given

boundary conditions, for example from the internal aquous solution to the

external. This is difficult because one must know the concentration (activites)

of all ions, their diffusion coefficients, and the electric field at every point on

the way. Since for most problems these quantities are not known, many model

solutions make highly simplifying assumptions.

We mention three prominent simplified approaches (reviewed by Sten-

Knudsen, 1978)

l.To make calculations easier in free diffusion systems, ( Nemst, 1888) and

(Planck, 1890) assumed that at all points, the anion and cation charges

cancel out exactly

electroneutrality condition).

2. To calculate diffusion potentials in liquid junctions, (Henderson ,1907)

supposed that the two aqueous solutions mix linearly as one proceeds

through the junction.

3. For biological membranes, and today for channels, (Goldman ,1943),

(Hodgkin and Katz ,1949) introduced three assumptions: (a) The electric

potential drops linearly across the membrane (constant field); (b) each ion is

24

so the system is everywhere eletroneutral, (the
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not vary along the channel.

The more rigorous approach to solving the Nemst-Planck equations

calculates the electric field from first priniciples (Eisenberg ,1996) without

it is the major

force on the ions and it profoundly affects their distribution and motion. The

calculation uses Poisson’s law,

potential differences arise because of the tiny deviations from electroneutrality

in each small volume. In one dimension, Poisson’s law states the local second

spatial derivative of the potential,

macroscopic media, the Nemst-Planck equations and Poission’s equation are

solved simultaneously, yielding the internal electric field and concentration

profiles. The Possion-Nemst-Planck (PNP) model has been thoroughly studied

by (Levitt ,1991a; Chen and Eisenberg ,1993; Eisenberg ,1996; Nonner and

Eisenberg ,1998). Such PNP models also ready accommodate local immobile

charges and can include partition coefficients and activity coefficients

25

uninfluenced by any other ions (no interactions and no elctroneutrality 

considerations); and the diffusion coefficients and activity coefficients do

presupposing its shape. The electric field is always central as

a fundamental rule of electrostatics that all

d2i///dx2 , is given by — , where pis the local concentration of excess

charge and e is the dielectric constant of the medium. For electrodiffusion in
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fundamental solutions of the Nemst -Planck equations in macroscopic

diffusion regimes.

All the Nemst-Planck-derived models are continuum models. They do

not identify or follow individual particles. They use average concentrations and

assume that ions move in average electric field. If they calculate the electric

field, they do so as average electric fields,which is nothing more than the mean

field approximation. The various simplifications used in each model lead to

insightful partial descriptions of potentials and fluxes. Some of the assumptions

atomic

dimensions, like ion channels. Although, the results are models that ignore

certain physical facts in order to obtain tractable expressions, all are useful and

advance our understanding.

In the next section , we shall describe the dynamics of nonequilibrium

systems which are better described under stochastic dynamics.

26

are more acceptable for macroscopic media than for those of

(collectively called “excess free energies”). PNP models give the most
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2.10 Stochastic dynamics

There are several tools in statistical mechanics that treat the dynamics of

nonequilibrium systems, the most widely known is a theory of Brownian

motion. The behavior of an ion in the electrolyte solution undergoing the

random type of motion can be described by the dynamical equation of motion

in classical mechanics, known as the Langevin equation.

In common with Nemst-Planck models, Brownian Dynamics models

(Cooper et.al. 1985;Chang et al. 1998) represent the solvent as a continuum

having a frictional coefficient for each ion species and a dielectric constant.

However, in Brownian dynamics the individual trajectories of each ion are

calculated in time, so one gets a movie of the motions of every ionic particle.

Every ion follows a path as it is driven by 1) a random force that models

molecular collisions and by 2) electric forces that come from external fields,

local fixed charges, and all the other local jiggling ions. In one approach to

Brownian dynamics (Chang et al. 1998), trajectories are computed from

Newton’s laws of motion, which for each particle relates the product of its

particle (Langevin, 1908)

27

mass and acceleration (m a ) to the sum of three kinds of forces on the
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Here, the first term

stochastic variable simulating the collisional forces, has a mean of zero. In

calculations, the direction and magnitude of the random force are chosen at

generator. The electric field can be calculated from the Poisson’s law alone.

Because Brownian dynamics follows the fate of every particle by

integrating in tiny steps of time, the calculations take much longer than those

of Nemst-Planck models. For problems of electrodiffusion in large spaces,

Brownian dynamics and Poisson-Nemst-Planck models give equivalent,

correct answers (Corry et.al.2000). However, as a diffusion space shrinks to

the size of ion channels and atomic dimensions, there are advantages in

dealing with discrete diffusive particles rather than using average

concentrations and average electric fields and Brownian dynamics will give a

physically more correct descriptions. (Cooper et.al 1985;Corry et.al. 2000) .

We, therefore, introduce the molecular dynamics solution in the next

section.

28

on the right hand side is the electric force and the

second is the frictional force proportional to velocity. The last term, a

= ziqe^-~ ft — + (random force) 
dv dt

successive time points (typically 1-100 ps apart) from a random-number
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2.11 Molecular Dynamic Solution

This approach is made possible by availability of channel structures that

are known to atomic resolution. Until recently, the only channel that met this

condition was gramicidin channel. However, with structures now available for

the protein channel (Kreusch and Schulz, 1994), potassium channels (Doyle et

mechanosensitive channels (Chang et.al.,1998) (all from bacteria), the

molecular dynamics (MD) approach now has the potential to be applied to the

aforementioned biologically interesting channels. The basic idea is the

following: one assembles an initial atomic model of the channel protein, the

channel water, a nearby region of the channel lipid membrane, and samples of

the bulk water at both ends of the channel. One then places some ions in the

water, sets the temperature and applies a voltage or concentration gradient and

directly measures the ion flux as a function of time as the exact atomic

dynamics of the model are simulated on the computer. At each time step in the

simulation, all the forces on each atom are calculated and the atom moves

under this force for a time period short enough that the forces should remain

constant. Unfortunately, this direct approach is still beyond our current

29

al., 1998), iron transporting channels (Ferguson et al., 1998) and
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computational limits.

These numerical calculations also have some other limitations, beyond

that of computer time. The most serious problem is a fundamental limitation in

the accuracy of the atomic force constants.

note that there are several approaches to

the study of the ACh channel. However, Laplace and Poisson equations play

very fundamental role in understanding this phenomenon. We, therefore, in the

next chapter look at the mathematical implications of these two equations and

establish it’s existence and uniqueness.

30

To conclude this chapter, we
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CHAPTER THREE

ON THE USE OF LAPLACE AND POISSON EQUATIONS MODELS TO

DESCRIBE ION PERMEATION IN ACh CHANNELS

3.1 Introduction

The basic concepts we consider here are the link between electrostatic interactions

and biological macromolecules and how they affect the flow of ions through the

ACh channels. Two such concepts are “electronic charge” and “electric potential”.

They are related through the Laplace and Poisson equations. We herein examine

the Laplace and Poisson equations through harmonic functions and establish it’s

properties.

Laplace and Poisson equations

The mathematical theory of potential is basically the study of Laplace equation

and its related inhomogeneous Poisson equation. These are elliptic equations and

therefore require Dirichlet (or Newmann) conditions on a closed boundary.

Basically, Laplace equation arises in electrostatic problems, the solution being the

electrostatic potential.

The equation

31

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



(3.1)= 0

are orthogonal Cartesian coordinates is called the Laplacewhere

equation .The equation may be written in the form Aw = 0, where

The non-homogeneous equation

(3.2)

Aw = y,or

where f is a known function is called the Poisson equation. The form of the

differential expressions on the left sides of the Laplace and Poisson equations are

cylindricalCartesian coordinates. Inall orthogonalthe insame

coordinates/ r, (p. z),

1 a (3.3)A =

and in spherical coordinates , (r,0,cp\

(3.4)A =

(See Appendix 4 for the derivation of the Laplacian in various coordinate

systems)

32

a^ 
dr)

d2u 
+■ — 

dx.

r— + 
r dr \ dr )

d2u
dx^

. n a > 
sin#— +

de)

d2u

a2
+ dz2

1 d C 2 
r2 M

d2u 
~T + ox}

d2u
dx3

d2u
+------

2 dx3

1 a2 
r2 sin2 6 d(p2

A a2 a2 a2
A —--- — 4----- — 4----- z~

dx2 dx} dx}

x2,x3

i a2
r2 dq>2

i a
+ r2sin0 30

a
dx2
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The mathematical problem is said to be correctly stated if a solution exists that is

unique and that is a continuous function of a given set of conditions of the

The requirements contained in the formulation of the concept ofproblem.

correctness reflect our general phenomena (i) which must arise when certain

completely

determined by these conditons (the solution is unique), and (iii) which are changed

changed. The correct statement of a problem

usually assures

correctness of the statement of a boundary-value problem vary from one type to

another. However there is a basic group of conditions that enter into all these

second-order partial differentail equation) must

(a) be continuous in the region for which the problem is posed, up to the boundary

of the region,

(b)have continuous second derivatives within the region and satisfy the given

equation (for example, Laplaces, Poission’s),

(c) satisfy the given boundary conditions on the boundary of the region,

(d) (if the region is three-dimensional and infinite) approach zero as we displace a

given point an infinite distance along an arbitrary ray contained in the region.

Solutions to boundary-value problems in three-dimensional regions satisfying

these conditions will be called regular solutions.

33

only slightly if the conditions are

formulations constituting a solution to a boundary-value problem (stated for a

a physical meaning to the solution. The conditions assuring

necessary conditons are met (a solution exists) (ii) which are
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Regular solutions to the fundamental boundary value problems are unique

the boundary conditions. The regular solutions exist only when the given boundary

conditions

important, because any boundary condition within the physical meaning can be

approximated to any desired degree of accuracy by smooth functions.

3.2 Harmonic functions

A function w(x) is said to be harmonic at a point x if it has continuous second

derivatives and satisfies the Laplace equation at that point. A function u(x) is said

to be harmonic in a closed region V if the following conditions are satisfied:

(i) it is continuous throughout that region

(ii) it is harmonic at all interior points of the region;

(iii) (when the region V is infinite) it approaches zero as we displace a point x

infinitely far along an arbitrary ray belonging to the region.

An extreme -value theorem

If a function w(x) is harmonic in a region V, it does not have maxima or minima

within that region but attains its largest and smallest values on the boundary.

Proof: Let us suppose that the function u attains a maximum at a point x e V - F.

Consider a spherical surface

region V. The radius of the sphere can be chosen sufficiently small so that

34

x, lying entirely within the, with center at point

(sometimes under certain additional conditions) and they depend continuously on

are sufficiently smooth. In practice, this point is not especially
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(3.5)

either on or within the surface £. Consider the inequality.

7^-^ (3.6)

and Then, on the basis of

inequality (3.5), the function

(3.7)

at the point £ = x. This means that its

maximum must be attained within this surface f. But at the point where the

maximum is attained, the second derivatives with respect to the coordinates of the

point £ cannot exceed zero. However,

= t/A^x - £|2 = 67 > 0 (3.8)A^v =

The contradiction shows the impossibility of inequality (18), it follows, therefore,

that the function u cannot have a maximum value within the region V.

Corollary: If two functions u and v are harmonic in a region V, satisfaction on the

boundary of the region of one of the inequalities u < v or \u\ < v implies the

satisfaction of the same inequality within the region also.

35

d2v

can find a sufficiently small positive number 77 such that at an arbitrary point lying

where

where |x-£|is a distance between the points x

max+*>w(x) >

2 1< — 8, 
2

will exceed its greatest value on a

a2v
S<52 +

cr, and £ is a positive number. Also, we

a2v

:m« is a maximum value of u on

v^)=u^+J1\x-^\2
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/

Proof. If the function

boundary of the region, it must be non-positive everywhere in the region since

within the region it cannot exceed its maximum value on the boundary. The

the two inequalities u < v and - v < u . From what has been shown, the satisfaction

|w| < v .(Koshlyakov N. S et. al, 1964)

3.3 Removable singularity lemma

Suppose that a point £ = x is an isolated singular point of a function, u(g) and

£ approaches x than does l/r

has a removable singularity at the point x and can be redefined at that point in such

a way that it will be harmonic there.

sufficiently small that the sphere

such that r < a belongs entirely to the region Q. It is

36

that, at all points of some neighborhood Qof the point x, the function w(^) is

possible to define a function that is harmonic in a sphere and that coincides on its 

surface with a given continuous function. We denote by v(£) a function that is

(£) increases

u — v which is harmonic in the region, is non-positive on the

of each of these on the boundary implies their satisfaction within the region as

consisting of points r

Proof: Let us choose a positive number a

no more slowly as

well. Hence, the assertion is also true in the case of the inequality

assertion thus follows in the case of u<v. The inequality |w| < v is equivalent to

harmonic. Then, either the function u\

(where r = |x - £| is the distance between the points x and £ ), or the function )
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(3.9)

It is non-negative within the sphere r < a and harmonic in the region Ve that is

obtained by removing from the sphere r < a an arbitrarily small neighbourhood

approaches x) then there

exists a number T], which approaches 0 as £ approaches 0 such that

(3-10)for r - 8 and r = a

For 77 we can take the smallest value of the expression with r = 8. Since the

function u-v and 77(1/7*- 1/a) are both harmonic in the region Ve, then from the

corollary to the extreme-value theorem, the inequality (3.10) remains valid for

e < r < a . Let us fix the point £ by giving the left side of the inequality (19) and

also the function (1/r-l/a) certain fixed values; then let the radius g approach

since its left side is independent of 8, we have u — v for all £ x and r < a.

Thus, the function w(^) increases more slowly than 1/r as £ approaches x, then

37

harmonic in the sphere r < a, having the same values on its surface as does the 

function v(^). Let us consider the function

r < of the point x. As £ approaches x, the function increases in proportion to

approaches x (i.e., if the product ru approaches 0 as 8

1/r. Therefore, if the function w(^) increases more slowly than 1/r as 8

zero. The right side of the inequality (3.10) will approach zero inequality and,

r a

1 i< T1\u - V < 77--------
a)
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bounded for £ ^x. Then, since w-vfor all £^x, we may set m(x) identically

equal to v(x) at the point £ * x; that is the point x is a removable singular point for

the function w(^).

Thus, a function that is harmonic at all points of a region except for a finite

>/k-1
approached, The function has no other kind of singular point. An example of a

function with a non removable singularity at a point x'that is harmonic at the

remaining points in space is the function - x‘ |.

To examine functions that are harmonic in finite regions, let us place every point x

in space in correspondence with a point £ with coordinates.

(3.H)a - constant

to.

Since the relations

38

Z72 ( J

=x' rrv=1’2’3 lxl lxl

as these points aresingularity, increases at least as rapidly as

2 , 2 3
=X1 +X2 +X3 ,

are said to be harmonically conjugate with respect to the spherical surface referred

number of isolated points x‘ (where i=l,2,3,...), at which it has a non-removable

The transformation given by eq.(3.11) is called an inversion with respect to the 

spherical surface of radius a with center at the point x = 0. The points x and v(^)

for x , it coincides with the bounded function v and, consequently, it is
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(3.12)

2

as if the space were reflected in the surface Z of the sphere of radius a with center

at the point |x| = 0. Points lying on E are mapped into themselves and points

lying outside (inside) Z are mapped into points lying inside (outside) E. In

particular, an infinitely distant point is mapped into the |x| = 0 and the point

inversion, curves are mapped into curves, surfaces into surfaces, and regions into

39

and regions containing the coordinate origin

Since the property of conjugacy of two points is mutual, that is since each is 

mapped into the other upon inversion arbitrary sets of points also have this 

property. In particular, if a region V is mapped into a region r then the region V' 

will be mapped into the region V. The regions V and V are said to be conjugate 

to each other. Suppose that V is conjugate to the region V under inversion with

we see that |£| |x| = a2.

From this it follows that the geometry of the transformation in question is the same

regions. Infinite regions are mapped into regions containing the coordinate origin 

are mapped into infinite regions.

single ray through the point. |x| = 0 Furthermore, if we calculate the distance 

|£| = +%2 +^32 )of the point £ from the origin of the ray by use of eq (20),

^ = — [i = l 2 31 X,- |x|2 L ’ ’ J

have the same values of all i, the harmonically conjugate points x and £ lie on a

|x| = 0 is mapped into an infinitely distant point. It is easy to show that with this
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respect to the surface of a sphere of unit radius. Let us prove the following

theorem.

Theorem (Kelvin). If a function u(x) is harmonic in the region V the function

/

(3.13)

will be harmonic in the region V

Proof: Let us introduce the spherical coordinates r, 0 and <p, with origin at the

point |x| = 0. Then, the point ^(r',6,(p) e V, where r' = 1/r , will be harmonically

.Therefore, eq.(3.13) takes the form

(3.14)

Let us first assume that the region V' does not contain point r' = 0. Substituting

the function V in the Laplace equation in spherical coordinates we obtain.

(3.15)

and since

we obtain

(3.16)

40

d 
dr'

\
£

conjugate to the point x(r50,(p\ r' = —

dr d 
dr' dr

, 1
,r = — 

r •

d 
—v dr1

= ru(r,0,<p)=—u\ 
r

r

1 z, V —,9,(p ,r 
r /

_LA 
r'2 dr

1 f i A,2 A 
dr'

* 5 ( 1 n

d ( 2 

dr dr J

v(r\3,(p} = ru{r,0,(p} = ^u\ 
r' 1

dr

■ = r2 ^\ru(r,0,(pft = r 
dr2

1

1^1

d
dr\r

(11
r
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so that

(3.17)= 0+

same order of the function v(^) in the region V'. Thus, the theorem is proven for

the assumption that the point r' = 0 does not belong to the region V'. This point is

singular for the function

(3.18)

Let us show that this is a removable singularity.

Suppose that E, is an arbitrary point of the region V that does not coincide with

41

when V. Consequently, the

function v(£) satisfies the Laplace eq.(3.15) when E, e V. Then, as can easily be

seen by direct differentiation, the existence and continuity of the derivatives of 

m(x) in the region V imply the existence and continuity of the derivative of the

contain the point r' = 0 and, from what we have shown above, the function v is 

harmonic within this region and, in particular, harmonic at he point £ ■

Since the function u is harmonic in the region V, this equation is identically 

satisfied when x(r,#,p)G F, that is

Consequently, the function v is harmonic at all points of some neighborhood of the 

point r' = 0, except for this point itself (where it is not defined). By the preceding

1
V = - 

r‘

1 fl n —u —,0,(p .J

1 d2u
sin2 e se2

the point r' = 0, and that co is a sphere with center at the point r' = 0 and radius 

so small that the pointy lies outside the sphere. Then the region V'-a) does not

d f 2 du — r — 
dr y dr

, - | d . du+ ——sin#—
sin# 1^3# d6

1
sin# I 3#
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lemma, as r' approaches zero the function v either remains bounded or increases at

least as rapidly as 1/r', However, the latter is impossible. For it follows from eq

.(3.14) that

(3.19)

As r' approaches zero, the function utyr' approaches a limit that is equal to

its value at an infinitely distant point. But since the function u is harmonic by

hypothesis, this limit is equal to zero, and, consequently.

(3.20)

Thus, the function v is bounded in a neighborhood of its singular point and hence,

completes the proof of Kelvin’s theorem.

A lemma on the behavior of a harmonic function at infinity follows from Kelvin’s

theorem:

A function u that is harmonic in an infinite region satisfies the inequalities

du 2 (3.21)|w(x)| i = 1,2,3,

where A and r0 are properly chosen constants.

Proof : Suppose that £ is a point that is a harmonic conjugate of the point x. The

function v(^)=|x|w(x) is harmonic at the point £ = 0 and in some neighborhood

42

|x| ’

limr'v = 0. 
r'-O

|x| = 7*!

r'v(r',0,^) = u\

+ x22A

"w2
2 1+ x3 >r0 >

it may be redefined so as to be harmonic throughout he entire region V'. This
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kl (on the basis of Kelvin’s theorem) it is, therefore, bounded there. This

implies the first of the inequalities (3.21) for

where Jois the maximum of the function |v(^)| for |£|<e. Furthermore , noting

the formula

(3.22)

follows from eq .(3.7)), we obtain by direct differentiation

INA)~

(3.23)

and (where j = 1,2,3), and also (in theSince the ratios

and dv/d£ J are bounded, there exists a

positive number 4- such that

(3.24)

If, for A, we choose the greatest of the numbers A0,Ay(where j = 1,2,3), we

43

du 
dxt

w Lin <

obtain all the inequalities (24).

The theorems and proofs given above will allow us to establish the uniqueness of

j__a_
|x|2

that for a -1, formulation |v(^)| for |<f | < . Furthermore, noting that, for a = 1,

du 
dxi

xj/\x\

a

neighborhood |£| < £) the functions v

IN

A
IN2’

r0 = 1/e, and for some value A > Ao,

Xa 9

IN5&
du d
dx, d^a

? Y 3 Y 
v — —TV

IN3 lJ

ft
1 d 2.Xj

+ ^v 
a IN

1 1 £
|xp£ |x|2 IN

2X/ y. 
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the solutions of the Laplace and Poisson equations. We do so in the next section .

3.4 Uniqueness of the Solutions to Boundary-Value Problems

Let us prove the uniqueness of the solution to Dirichlet’s problem for the

Laplace and Poisson equations. Let us suppose that Dirichlet’s problem.

(3.25a)Azz = / when xeV-FV,

(3.25b)when x&FV,

ishas two distinct solutions 2

harmonic in the w and vanishes on its boundary.

If the region V is bounded, we may immediately apply the extreme-value

theorem. Inside the region V, the harmonic function w cannot have values

either greater or less than its boundary value, which is zero. Therefore, it is

functions

infinite, we use Kelvin’s theorem, setting

(3.26)

where £ is the point with coordinates

(3.27)6

The function w

V) and vanishes on its boundary because of the boundary conditions for the

44

=

w*(^) = |x| w(x),

* (<£) is harmonic in the bounded region V' (conjugate to the region

ux and w2 coincide within the region in question. If the region V is

equal to zero throughout the interior of the region; that is, the

ux and w2. Then, the difference w = u{ - u
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function w.

Consequently, on the basis of the above,

function. w(x) = |£|w * (^) is also equal to zero. This completes the proof.

It can be shown that the solution to Dirichlets’ problem in question depend

solutions differ by not more that an amount Then, the functions, identically

the boundary of the region. If the region V is bounded, then, on the basis of the

extreme-value theorem, the function Ux and u2 cannot differ from zero by more

then £ at an arbitrary point within the region.

assertion follows: If the region V is infinite, but the point |x| = 0 does not belong to

obtain the function

a maximum values of the quantity |x| on the boundary FV. Consequently from

what we have shown, w(x) < (A/B)s, where £ is an element of V'.

Hence w

45

*(£)< As, where B is the smallest value of the quantity |x| on the

equal to ux - w.

region V. The boundary values of the function w * do not exceed , where A is

w*(s) is equal to zero and hence the

:21 < s. From which the above

Dirichlet’s problems for a single region, and that the boundary values of these

continuously on boundary condition. Suppose that ux and u2 are solutions to two

Consequently, throughout the entire region, |ux - u

the region, them, by using Kelvin’s-theorem we

2 is harmonic and differs from zero by no more than 8 at points of

w*(£) = |x|w(x), which is harmonic in the bounded region V' conjugate to the
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boundary FV. Thus, the assertion is proven.

To examine Neumann’s problem and the mixed problem, we use the identity

(3.28)— u

integrating both sides, we obtain Green’s theorem in the form

(3.29)

where V is a bounded region. Setting one of the functions appearing in this

formula equal to unity and the other equal to the square of the harmonic function

we arrive at Dirichlet’s formula.

2
(3.30)111 dV

We shall use this formula to establish the conditions for uniqueness of the

solutions to the interior mixed problem and the interior Neumann problem for both

(3.31a)when x e V - FV= f

(3.31b)when x e FVPu = if/

If 0 is not identically equal to zero, eq .(3.31a) corresponds to the mixed problem,

and for 0 identically equal to zero, if refers to the Neumann problem.

46

Laplace and Poisson equations.

With the notation (3.13), both these problems can be written in the same form

|J(vPm - uPv yds = Jjj(vAM - nAv)c?K
FV V

•-f dwto dw 
<dX2,

\2

■ +

2

+ jjwPWS - —
FV 2 FV

| du n
V —\ an

where p is an arbitrary continuous function. Using the notation P = + P, and
dn

dv to— + Pv 
dn J

du dv= v----- u—
dn dn
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are continuous and have continuous first derivatives throughout the region V.

is a solution to the homogeneous boundary

problem for the Laplace equation

Aw = 0 when x e V - FV (3.32a)

Pw = 0 when x e FV (3.32b)

which satisfies the same continuity conditions. Then, for non-negative p, it

follows from Dirichlet’s formula that

(3.33)dV <0

since all the terms in the integrand are non-negative, and since the expression

itself, by hypothesis, continues, it follows that dwjdxt =0 (for i = 1,2,3) that is

To determine the admissible values of the constant of the right side of this

equation, let us turn to the boundary condition for the homogeneous problem. If p

is identically equal to zero (the Neumann problem), any constant satisfies the

boundary condition. Consequently, any constant is a solution to the homogeneous

Neumann problem, and therefore, the solution to the homogeneous Neumann

problem is determined except for an arbitrary constant However, if p is different

from zero for at least a portion of the boundary FV , then this constant will be

47

in
V

dw
\2

• +
\2

■ +

w = -u2 = constant.

f dw
J

Then their difference w = ux - u2

Let us suppose that the problem (3.31a) has two district solutions ux and u2, that

/ \2 ow
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equal to zero, that is, the solution to the mixed problem is unique.

The function

(3.34)

where and (for j = 1,2,3) are the coordinates of two point £ and x satisfies

Laplace’s equation for £ * x. Since the expression 1/r is symmetric with respect to

coordinates of the points £ and x, this expression is valid under differentiation

with respect to coordinates both of the point £ and of the point x.

At E, - x, the function 1/r has an infinite discontinuity.

If a function is harmonic in a region V with respect to the coordinates of

the point E, and if it and its first derivatives are continuous, we shall call the

function.

(3.35)

the fundamental solution to Laplace s equation in the region V.

48

By using the properties of fundamental solutions we can derive some important 

integral formulae relating to the value of an arbitrary sufficiently smooth

3.5 The Fundamental solutions to Laplace’s equation. The basic formula in 

the theory of harmonic functions

1

V j=i

= r- + (/)($,x}
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function at an arbitrary point (within

boundary of the region being considered.

(3. 36)

the centre at a point x. Here instead of the relationship (3.18) we obtain

(3.37)
Jn,

As S approaches zero, the integral

(3.38a)

approaches the improper integral

(3.38b)

if this improper integral exists. The integral

49

Suppose V is a bounded region when a point x lies outside the region V, the 

fundamental solution is harmonic in this region. Therefore, by setting

v(^) = A(^,x) in Green’s theorem we obtain.

v-a,
\\\LdudV^ - \\L^dSi +

xeRE-V

or on the boundary of the domain of its 

definition) with the set of values of this function and its normal derivatives or the

^LAudV^
v

point xlies within the region V, we way apply Green’s theorem to the region

V where is a sphere within the region V of arbitrary small radius 8 with

V

fff rL------u— dSc
dn dn)

where RE denotes all space and the point x is treated as a parameter. When the

ffT Tdu dl\L----- u— dS(
dn dn)rv ' '
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(3.38c)

is continuous ( by the assumption

made in the derivation of Green’s theorem) and therefore bounded, and the

Let us examine the behavior of the integral of udL/du. From eq.(3.35)

(3.39)£
E

The first of the integrals on the right side vanishes as s approaches zero because

the integrand is bounded. By using the fact that

(3.40)

transform the second integrand, since the

outward normal to the boundary of the region V — is directed along the radius r

within the sphere . This yields

(3.41)
£ "

By the mean-value theorem,

(3.42)

50

1
4/r

1
4/r

d 
dr

\\udS;
Klc

d
U —dn\r J fW

/Off

OF rn

On the surface of the sphere, we can

dS,

Fn r

r )

as V whereas the area of the surface FQS 
/ £

- dS£

$ ~ B
FQ

approaches zero because the derivative du/
/ dn

decreases as s1.

1
4 yrs'2

function Z(£,x) increases on FQ£

ff dLu—dS
FClc dn

f d | 
u—J dn'

d<P jC 1 flu---- dS t +----
dn 4?r **F£1

dn
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is equal to the area 4?t£2 of the surface and that.
G

value of u

(3.43)av

Using the values of these limits, we finally obtain

(3-44)
FV

Let us assume, finally that the point x is located on the boundary of the surface

is the

portion of the surface (of small radius G with the center at x ) that lies on the

region V, we obtain

(3.45)£

is that part of the surface of the sphere Cis lying in the region V As e approaches

over FV. For its value, we take the integral

51

Noting that the integral
FQe

using the reasoning of the proceeding case, with the exception that now we have in

FV~<ac

Ku—dS, £J dn <

- u{x\

on the right side which we compute by

approaches z/(x) since the function u is continuous we obtain

as e approaches zero, the

is that part of the bounding surface FV lying in the sphere Qs and co\

Uar_
2

where CO£

Fv. Then, by applying Green’s theorem to the region , where

r du dL\L------u— db
dn dn) 1

du dL\
L-r-u—\dSe 

dn dn J

zero, the integral on the left side of this equation approaches an improper integral

| = lim ulim ffw—dSc = lim 
£_>otq dn g *->04^

= + u(x\x E.V - FV)
V

- \\L—dS + 
iJ dn

where um is the value of the function u at some point belonging to the sphere Qe.

dL
dn
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eq.(3.43), instead of the integral.

(3.46a)

the integral (3.46b)

which is equal to the area of that portion of the surface of the sphere that lies

in the region V. Let us introduce at the point x a local cartesian coordinate system,

the third axis directed along the outward normal to the surface Fv

at the point x. By hypothesis, within some sphere with centre at the point x the

equation of the surface Fv can be written in the form

$3 = (3.47)

where the function f and its first-order derivatives are continuous and vanish at the

point x. Therefore, from the definition of a differentiable function, throughout

^3 =^l+^2 (3.48)

where the quantities \ and h2 vanish simultaneously with . Let us introduce

spherical coordinates,(r, 9, <p), by setting

(3.49)q ] = r sin 6 cos (p,

(3.50)

52

some neighborhood of the point x,

Substituting these expressions in the relations that we have found, we obtain 

cos(9 = \ sin 0 cos<p + sin0p = h(r, 0,0)

$2 = rsin0sin<p, $3 = rcos0

FQe
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where h is a function that is bounded and vanishes simultaneously with r, and

where 3 is the angular coordinate of the point

expression, we arrive at the following evaluation of the integral.

sin 3'dd'

(3.51)

(3.52)where,

is a bounded function that vanishes simultaneously with g . Therefore,

H(x) (3.53)

which leads us to the relation

:(x) (x e FK) (3.54)

53

1
4tf

1
4?r

IK

1 
= —4-

2

2n
p^[-COS0']^
0

1— +
2

In

\h{e,0,(p'}i(p
0

1 
+ — U\ 

2

2n d

jsinW
0 |zr

_ £_
4tF G

1
4/r e

y j j r2 sin 6' d 3'd cp' = 
tye

ov _
2

2n 0 
\d(p'\ 
0 0

on the surface Fv. By using this

i 2yr
//(g)=— \h(&,e,(p'Y(p’

™ 0

J. J_ 
“2 4^

2* > .

^d(p' Jsin##0' + -— 
o o

tye

= — u(x) 
2

j_ 1
2 4;r

= limuav 
sr->0

by combining eqs (3.36), (3.44), and (3.54), we may write

rr dL r
hm p — dSt =hm — 
£->o J J dn ^->o4^g

CDG

rrf r duL^--u--- dSt 
dn dn) V

1
4tt
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(3.55)

If the function u is harmonic in the region V, then eq .(3.23) take

(3.56)

This relationship is called the basic formula in the theory of harmonic functions.

It can be extended to infinite regions. Suppose that V is an infinite region with a

finite boundary FV, and that V* is that portion of the region V lying within a

sphere Q of finite radius r containing the boundary FV . By applying eq .(3.56) to

the region V* we arrive at an equation whose left side will differ from that of eq

.(3.56) only in by addition of the integral

(3.57)£

With unbounded increase in the radius of the sphere, this integral approaches zero

because the behavior of a harmonic function at infinity and from the definition of a

1/r3 whereas the

area of the surface FV of the sphere Q increases only asr2. Taking the limit as r

approaches oo, we again obtain the formula

54

fundamental solution L(£,x)), the integrand here decreases as

= .
V

xgRe-V, 
xgFV, 

when x g V - FV

when x e RE - V9 
xeFV, 

xgV-FV

0 when
- |w(x) when 
?(x)

0

~M(*) when
m(x) when

r/rdu dL\L------u— dS
dn dn)

ft/r du dL\L-—U— \ds 
dn dn) '

rrf T du dL\L-—u— dS 
w\. dn dn) '
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(3.58)

which coincides with eq.(3.56) for bounded regi

Let us set

L^,x) = (3.59)

The fundamental solution (1/4tt) (1/r) in an arbitrary region not containing the

point £ = x is differentiable infinitely many times with respect to the coordinates

of the point x, and each time, the result of the differentiation is a bounded function

of the variable £,. If x is an interior point of the region V, then £ will be different

from x when £ is an element of FV . Consequently, the integrals in eq.(3.56) and

eq.(3.58) can be differentiated with respect to the coordinates of the point x

(treated as parameters) infinitely many times. This proves the assertion for the

valid because, in eqs (3.56) and (3.58), we may change from integration over the

surface FV to integration over the S, which lies entirely within the region V and

which contains the point x. Since, within the region where it is harmonic, every

harmonic function is differentiable twice, the formula containing the integral over

will be meaningful and, consequently, it again impliesthe surface S

55

_1_£ 
4^ r

regions.

By using eqs (3.56) and (3.58), we shall show that, within the region where it is 

harmonic, an arbitrary harmonic function is differentiable infinitely many times.

x e Re - V, 
xeFV,

0

u(x)

when
(x) when

when x g V - FV,

case when the harmonic function u and its not continuous, this assertion remains

cdrdu dL\
dn dn)
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sphere Q,

(3.60)d/dn = d/dr

As before, we set

(3.61)

Then, on the basis of eq. (3.14), eq. (3.24) takes the form

(3.62)

that is, the mean arithmetic value of a harmonic function on the surface of a sphere

is equal to it value at the center of the sphere. This assertion is known as the mean

value theorem for harmonic functions.

56

= u(x\
FQ,

differentiability infinitely many times of the function m(x).

Suppose that Q is a sphere of radius a with center at the point x and that Q lies 

entirely within the region where the function u is harmonic on the surface of the

4tt r

1
4^2 2
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CHAPTER FOUR
ELECTROSTATIC POTENTIAL IN ACH CHANNEL

4.1 Introduction

In this chapter we focus on electrostatic interactions between biological

macromolecules and how these interactions affect the flow of ions through the

and “electric potential”.

The flow of charges in a medium is usually associated with the source or sinks

which produces the force field. For a unit area, the charge density

magnitude of the charge in a closed region and is described by Gauss’ Law which

states: “The net flux through any closed surface in proportional to the net charge

The point charges, however, interact

according to Coulomb’s Law, which states:

between two charges is proportional to the charge on each and inversely

proportional to the square of their separation”. The presence of an electronic

charge density p, creates a negative electric potential , .

This statement is usually expressed by the equation.

(4.1)V2O = -p/^

where s is a constant in this case called dielectric constant of the medium.

57

“The electrostatic force acting

p defines the

contained within the closed surface.”

ACh channel. Two of the key concepts that come into play are “electronic charge”
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(4.2)

with appropriate boundary conditions. The typical boundary conditions include

(i) the potential being assigned a known value at one of the boundaries, that

(ii) zero flux and

(iii) the potential being continuous at the channel solvent interface. Here, the

standard continuity equations are given by:

(4-3)<I>, =Oe,ee V<D, -n=ee V<I>e -ft,

where the subscripts that denote the inside and outside of the channel respectively

and n is the unit outward normal to the surface. The related homogeneous Laplace

56

isd>(r0) = <I>0,

V2O = -^
8

4.2The Poisson Equation Formalism

The Poisson equation formalism is used to describe a relationship between the net 

charge density of a system of continuous distribution of charge on an ion and the 

system s potential . As stated in the introduction, such a potential derives from 

sources or sinks of the flow of charges producing the force and it is normally 

expressed in the form of a second order partial differential equation:

equation is equivalent to the requirement that the potential does not attain any 

minimum or maximum value inside the region of interest.
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4.3 Cylindrical Approximation

channel on the potential barrier and the electrostatic field on ion moving within

that geometry encounter, we will examine the solution to the Poisson equation

inside this overly simplified model of channel geometry. The cylinder is

represented by the parametric equations with parameters ,(r,0,z), as

(4.4)

The Laplace equation in this domain is given by:

(4.5)-0

59

= rcosd
- r sin 6
= z

(See Appendix 4)

To seek the solution of this equation we use the method of separation of variables.

x

■ y
z

geometry to represent the ACh channel has some 

advantages. These include the simplification of the mathematical calculations of 

the channel potential and subsequent model analyses. For example, by using 

cylindrical geometry, the separation for the Laplace equation is assured and axi- 

symmetry is guaranteed. Consequently, an analytical solution to the shape of the

1 52<D 
r2 d02

g20> 
dr2

g2d>
+ dz2

1+------+
r dr

V2O =

The cylinder is used as convenient approximation to the ACh receptor channel.

The choice of cylindrical
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z

r
e

Fig. 4.1 Cylindrical geometry - an approximation to the ACh channel.

The equation separates as:

O = ®(0>(r)z(z) (4.6)

where ®(o\R(r\z(z) satisfy the equations:

+ p20 = O (4.7)

(4.8)
r dr

(4.9)

real numbers. For a cylinder of length I and radius r0 withHere, p and k are

at the other faces, the analytical

60

1 
I

7 
I 
I

d2® 
de2

1 d ( dR r —I dr
< 2 \

+ R = 0
I r J
^--k2Z = 0 
dz2

<T> = <T>0 at z = 0 and the potential being zero

solution to the Laplace equation within the cylindrical domain is given by
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udu}m
\

(4.10)

x

(see appendix 1 for further details )

is the Bessel function of order

The corresponding Poisson equation is given by:

(4.H)

where the initial conditions are similar to those of Laplace equation. Applying one

of the standard methods of solution of nonhomogenous partial differential

(4.12)xsin

61

9 e

*(r,0,z)=^
n,m

ld2<P
r2dd2

*

iso—-+ 
rdr

eigenvalues, O' and u

ro ,

are the eigenvalues of

' nP r

where Jm

52<D
+ 5z2

cos[/m(0-0')] dd'j0ro

520> 
dr2 +

m, and n = l,2..., labels the

m,n

V2O-

2
and p = — is a nonnegative real number . 

k
equation such that /?m(n+1) > pmn

are dummy variables and P mn

equations, the solution to the Poisson equation can be given as.

(32/^3K(2n + l) 
JI [rfom |(2" +)/ ^ + /r0 }

jinh K^„w AoX/-^)] 
m+i(xp mn )]2 sinh [(?z0 mn /r0 )]
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where the parameters are defined in Appendix 2 .

4.4 Toroidal Approximation

Cartesian ones through the following set of equations (Morse and Feshbach, 1953)

(4.13)y =

62

An improvement on the cylindrical channel geometry is the adoption of a toroidal 

structure (see for example, Kuyucak et al, 1998).

The toroidal coordinates (77,//,^) (see figures 4.1b and 4.1c) are related to the

asinh/zsin^ 
cosh // - cos 77

a sin 77
z —

cosh/z-cos 77
 asinh/zcos^ 
cosh // - cos 77 ’
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z

e

63

Figure 4.1b. The torus is generated by rotating the two circles about the z-axis through 

two right angles. This is illustrated in the first figure. The second figure shows how the 

three coordinates defining the toroidal system are related.
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>o

Figure 4.1c: A cross-section of the toroidal catenary. The channel is formed outside the

‘doughnut shape’. The solution to the Poisson equation here, is therefore an outer

solution

64
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In the x-z plane, the circle

(4- 14)

= a

= zzcoth /z1 (4. 15)

Thus, as 77 changes from 0 to 2;r, constant follows a circle of the minor radius,

circles around the perpendicular z axis, the full toroidal boundary is generated.

We note that the ratio between the minor and major radii, r/R — 1/cosh/Zp is

and r = 0, and the toroid becomes a ring of radius r around the z axis.

65

2a sinh /z, 
cosh2 -1

independent of a and determines the diameter of the constricted region of the 

model channel. For /z = 0, both r and R are infinite, and the circle becomes the z

axis. In the opposite limit, // — , the major and minor radii coincide, i. e., R = a

r = a/sinh/Zj, centered at the major radius R = acoth/zI. By rotating the two

■2 at rj = n. Thus the radius r of the torus is

Similarly, the distance from the origin to the centre of the torus R can be expressed 

in terms of the toroidal coordinates as

Xj - x2

2
R = x2 +

cosh //j 
sinh //j

( ■ i

sinh /z1 1
^cosh/Zj+1 sinh/Zjy

describing the toroidal surface will intersect the 

positive x axis twice, at 77 = 0 and x

related to the toridal coordinates by-the expression,

Xj - x2 = _ a sinh/z,
cosh )J,X -1 cosh +1

2a
-= 2r sinh /z.
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(cosh/z). The most general solution

can be written as

(cosh /z)] (4. 16)

where

f(/i, 77) = ^/cosh/z-cos/y (4- 17)

<j>nm are to the determined from boundaryB,

conditions. (See Appendix 3 for further details).

The potential due to a point charge q at r0 = (/z0,770,X) *s given by (Morse and

Feshback, 1953)

(4-18)

66

m 
7-1/2

X COS 77
r(z? -m +1/2) 
r(w + m + 1/2)

cos/w(^-^o)

7
Hrol

m
n-\/2

Qn~\J2

nmjl nm ’

The change in the p

diverges as // -> 0. Solution of Poisson’s equation for the system of a point

and the coefficients Anm,

Solution of Laplace’s equation in toroidal coordinates is given in terms of the 

trigonometric functions for 77 and <f> and the toroidal harmonics ( Legendre 

functions of half-order) P"1/2 (cosh/z), Q"' 
/I 1/z

= —/(u,7)/Cuo,77o)EE(2-^'>) (2-^o)
7K2 n=0 ot=0

solution reflects the fact that Pf.

(cosh zz) + Bnmp

diverges as p -> and

p™V2(cosh/z)e™l/2(cosh/z0) /z</z0 
Xl1/2 (cosh p)P™l/2 (cosh/z0) B .

<Z’ = /(A,7)ZSKe“i/2 
n=0 zm=0

X COS 77(77-77nm)cos/n(^-Xm)
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nm

With these

caveats, the superposed potential can be written as.

(cosh //)

(4.19)

(cosh/z)exp[m(77-77;m)

(4.20)

where

(4-21)

charge eq.(4.19) as is the appropriate

67

• exp[m(77 - 77'm )]cos w

(cosh x/)exp[7? - 77O J .cosw+ CnmQ"'^i2

, ? xr(w — zn + 1/2)
/Vo^oA2 + m +1/2) ’ 'c nm

the tf) solutions are decoupled,

'nm m eq.( 4. 4) must be coherent with

Pin = YAnmQn-M2
n--<x> m=0

are not necessarily coherent with ?]Q. This is

rn-\/2<Pout = /(a«)L Si5- 
n=-oi m=0

1 g 
\n g0G] Tta

are constant coefficients . In eq. (4.20), we used the fi > /z0 solution for the point 

one for the boundary at A > ZA • Also, we

a distinctive feature of the toroidal coordinates, and complicates solutions of 

electrostatic problems in comparison with other coordinate systems.

charge outside the toroidal boundary A =

e2 inside the torus, can be found by superposing the potentials in Eqs. (4.4) and

4.6). As usual in such boundary value problems, 

and the phases

u\ > Ao 5 with dielectric constants €j and

,“i/2(c°shAo)

<j)Q, so that </>nm = </>0 for 

all n,m. The same argument, however, does not hold for the 77 solutions. Because 

of the square root factor of f eq. (4.5), there is coupling between different 

coefficients and the phase factors T]nm
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(4. 22)=Gi

(4.23)

(4.24)

(4.25)
nm

68

= ElA^expfwifo-fl
rt=-00

d(Pin

5(cosh ji)

we obtain the following equations for every m:

d(Pout

3(cosh //)
Win ~ (Pout >

co

£^2exp[mfe-^)]
W=-00

Here we have introduced the compact notation for the constants,

(cosh a), 2 = 2™ 1/2(cosh a) and f = Similarly, the primes

= Anmntn

replaced the cosines with exponentials for the 77 solution, because it simplifies the 

boundary matching.

S2

=ei E[Am (A' + /P)exp(/7 - rfnm )] 
n=-oo

+ cnm (fQ' + /B)exp[in(77 - ?]0)]]

A'nm

C'nm ~

62 (/S'+ /B)exp[m(77-??;„)]
w=-oo

C )] + cnm Q exp[m(/7 - 7/o 1

P = P^2

over P,g,and f denote derivatives with respect to cosh/z evaluated at fi = fix. 

These equations can be further simplified by introducing the complex coefficients 

exp[-inv'nm\ B'„,„ = A™ exp[- in^„m] 

exp(-iM7o)

Applying the usual boundary conditions at // =
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(4.26)

e

(4-27)

+ C/8' + f 6)exp[/n7?]

= (<m-C'„m)Q/P (4.28)

Substituting B’nm in eq (4.27) and collecting similar terms gives

(4. 29)

r) eq. (4.29) can be

put in the form

P'2/P)exp(m7?)2(cosh -

(4.30)

69

(fQ' + f P)Q/P]^p[inJi\
n=-<x>

nmP + C'„m g]exp[m7?]

Substituting the above coefficients in Eqs. (4.23) and (4.24), we obtain

oO

E 4m6exp[z«7]=
"s-°° n=~ao

Using /' = 1/2/ and substituting back /2 = cosh//! - cos

QO

2 + /£?)exp[m?7]
n=-oo

= 2 Sj (cosh/q - cos

+ (e2

COS77)E4m(G2 6'-el
w=-co

B'nm

ri^C'^Q' - P' QI P)expM 
n=-oo

=e, Ec;m/(e'-P'e/P)exp(zn77)
M=-<»

-e1)S/™6exp[z«7;]
n=-CO

eq (4.26) now holds for each n5 and hence we can solve for Bfnm in terms of Arnm :

“ei Efc(#*' + /^)exp[zn77] 
n=-co
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+ 3,

(4.31)

Introducing further,

(4.32)

mwe obtain the following second-order difference equation for the coefficients E” :

(4. 33)

70

as typically encountered

- 2 cosh nJZ + /t"_!

n',n-l

+ 5ri,n-\

(g2 ~ei)S 
g2 0'-G1 P’Q/P

(Q'-p’Q/pK^

^[(2cosh/z1(G2 Q'-e 
n=-<x>

=ei E C'nm (&' - P' QI P^ cosh ^3n.n - (<5„. n+1 
n~~<x>

2 “Si

E>(e2 Q'- g, P'Q/P)A'nm

“(e2 S'-e, P'Q!P\8n,n+x

Notice that the cost? factors in the front leads to coupling of neighboring 

coefficients, so that eq (4.30) cannot be solved trivially,

in boundary value problems involving spherical or cylindrical coordinate systems. 

Fourier analysis of the series in eq. (4.30) in T?(i.e., multiplying by either tt't? or 

cos n' 77 integrating from 0 - 2tt gives

rm _ am

The real and imaginary parts of this equation must be satisfied separately, leading 

to two difference equations which through eqs. (4.25) and (4.32), determine both 

the amplitude A„„ and the phase Eq (4.33) also arises in the problem of a 

dielectric torus in a uniform electric field (Love, 1972) and can be solved using

q™ = 2 cosh +
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solution
involves an infinite

works (Kuyucak S.et.al.,1998,Shung S-H.et.al.2002) . We hereby present

numerically the graphical presentation of the potentials for cylindrical and toroidal

geometries. See Fig (4.2)

71

equation for cylindrical and toroidal geometries 

analytically. The analytical solutions for the potential profiles obtained are quite 

cumbersome. The simulations of these geometries have been discussed in many

4.5 Comparism of the Solution of Poisson Equation for the Two Geometries

We have solved the Poisson

techniques of the Green function. Because it is rather technical, a sketch of the 

solution is given in the Appendix (3). As seen in the Appendix the

sum of series of products. Therefore, it would be worthwhile 

to give some numerical results.
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to

CM

O

Figure 4.2 Potential profiles for the two geometrical approximations to ACh

receptor channel.

In Fig (4.1a) it is assumed that flux is zero, or the walls and the potential 4> is zero

at both ends (Aidoo.,2001).We noted that channel geometry has substantial effect

the following

midsection of the channel. For the cylindrical geometry, the potential increases

ith axial distance than the toroidal geometry.
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4.6 Merits and Demerits of the Poisson Equation Model

The Poisson equation used here is based on classical electrostatic theory. This

theory considers water to be a continuum and used the mean field approximation,

which assumes that the potential can be determined from a continuous distribution

of mobile charges. In addition, the size of the system under consideration must be

small, that is less than the Debye length (~ 5.3J°)as it is with the case of the ACh

interacting particles in a dynamical system.

73

2. The potential encountered in

membrane channel (Hille, 1992). This makes the Poisson equation more

appropriate for the calculation of the potential profile in the ACh channel than, for 

example, the Eyring rate theory or the Poisson-Boltzmann equation. Another 

advantage of this approach is its computational efficiency. Unlike the molecular 

dynamics approach, for example, the model here leads to a considerable increase 

in computational efficiency, since only one linear partial differential equation is 

solved. The molecular dynamic approach, on the other hand, follows the laws of 

classical mechanics and relies on integrals of equations of motion of the

the cylindrical channel geometry has about the 

same maximum as the toroidal channel (~ 4.8 KT). Considering the speed of a

sodium ion in the ACh channel (about 40ms-1) it appears the estimate of the 

potential barrier from the cylinder and toroid are quite high, since the ion must 

overcome the potential barrier before traversing the channel.
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potential in the channel via the Poisson equation. Based on our electrostatic

calculations, we were able to deduce that an ion permeating the ACh channel

must overcome an energy barrier, which is higher in the absence of mobile

charges than when mobile charges are present. We infer from our results that

the potential barrier arises, possibly, due to surface charges. The nature of the

potential barrier is such that

hence sodium or potassium ions cannot be trapped there, except when the

channel closes momentarily. Once they are drawn into the channel, they must

be ejected at the opposite end.

The ACh channel is endowed with many structural features. Our model

and the electrostatic calculations carried out in the channel geometry could help

in the understanding of some of the structural features of the ACh channel in

chloride ions, for example,

across the

74

We have obtained a realistic cylindrical and toroidal channel geometries 

from the three dimensional oblate . This enabled us to calculate the electrostatic

particular, and similar ion channels in general. Features such as ion selectivity, 

which makes the channel permeable to sodium, potassium and calcium ions,

CHAPTER FIVE

BIOLOGICAL IMPLICATIONS AND OUTLOOK

no potential well is created within the channel,

are determined by thebut impermeable to

electrostatic potential profile of the channel. These important ions diffuse

ACh receptor channel following the electrochemical gradient, the
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our model provides the means to evaluate
accurately.

not only involved in

fundamental to all electrical phenomena in neurons. Knowledge of the

electrostatic potentials in the channel assists in building up a theoretical

framework that can be relied upon to explain different sets of data pertaining to

the channel.

It has been stated in chapter one that signal communications in the

nervous system depend greatly

membrane potentialsand changes inACh,neurotransmitter, are

communication signals, and the potentials and ACh are the languages by which

information is relayed in the nervous system. Our model has the potential of

assuring a better understanding of this all-important physiological function,

subsequent to understanding depolarization, which follows the inflow of ions

into the channel.

Our model could be applied to gain

movement from the theoretical standpoint. The contraction of muscle fibers is

75

many cellular processes, but are also 

responsible for the coding of information in the nervous system. First, the flow 

of ions through the ACh channel and other similar membrane channels is

a better understanding of muscle

action potential which results from the flow of ions into the

The model has profound biological implications. As electric potential 

changes are

electrostatic component of which

on membrane potentials. Indeed the

initiated by an

channel, so that the threshold value of the membrane potential is exceeded. A 

better insight into how this phenomenon operates could be gained by relying on
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Again,

altogether to observe by other means. For example, it is possible to describe

solution phenomena in the ACh channel at microscopic level in terms of

reaction field energy. The field can easily be computed from the electrostatic

potential.

This work could assist in obtaining answers to a number of interesting

ion concentration and other interesting biological

facilitated by the ACh channel. In addition, by placing

studied more comprehensively

76

annel geometry and for evaluating the membrane potentials that trigger 

the inflow of ion.

or impossible

phenomena that are

dipoles at the protein boundary of the constricted section of the channel, studies 

on reduction of the potential barrier could be done. Such a study could be 

extended to gain a better understanding of the selectivity property of the ACh

channel.

With the availability of more realistic channel geometry, the study could 

be extended in various directions. For example, the steady-state could be 

when this work is extended to include the

residue charges on

questions pertaining to membrane channel in general, such as the effects of

our model could be applied beyond the direct biological 

evidence. It could also be utilized for the prediction of the dynamic behavior of 

ions in the ACh channel in particular, and similar ion channels in general, with 

a reliable degree of accuracy. Using the model geometry and the subsequently 

calculated electric potential profiles, it is possible to determine, or at least 

predict, ACh channel properties, which might be difficult
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channel potential.

77

concentration of sodium, potassium and chloride ions in the presence of the
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APPENDIX 1

(1)= 0

be obtained by the method of separation of the

= ^W)z(z) (2)

Putting (2) into (1) equation (1) is broken into

(3)+ m2 </> = 0

(4)

(5)

The solutions of (3) -(5) given as

(6)<fi = Acosm</> + Bsmm</>

(7)Z

(8)R = cxJm(kr)

83

1 d ( dR ------ r — 
r dr V dr

The cylinder is represented by the parametric equation with parameters (r, <9,2) 
as

d2(j)
d</>2

sinh k(l - z) 
sinh&/

The solution of (1) can 
variables.

/ 2 >
+ k2-^ 7? = 0 

r

+ c2jM

+ dz2

x = rcos 9
’ y = rsin 9

z - z
The Laplace equation in this domain is given by:

r dr
, 1 aV 

dr J r2 d(f)2

Since the potential in the cylinder is obviously a periodic Junction of angle * 

with the period -Ln, the constant m must be an mteger.

dz2
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With the boundary condition

|r=o=O (9)

(10)

It follows from this that k has an infinite set of values, defined by the formula

k = ^-(i = 1,2,3- 
m‘ a \ (11)

= ^o(n0
we form the series

(12)
sinhA-m/

and require that

co

(13)

expand %(r^) in the sine and cosinewe

84

Furthermore, the constant 
potential would be great 
impossible.

00 CO r -]
EE1A cosw^ + B,,, sinm^J
m=Q i=l

^('■ffe)2=o

m = 0,1,2,...)

co 00

^(r^O) = Y E cosm0 + Bml si
m=0 i-1

sinm^]+

where /zCT(,

C2 must be equal to zero because otherwise the 
on the axis of the cylinder, which, of cause, is

r A sinh*m, (Z-z)
Vm~------------1 a

To obtain the solution of the equation (1) which also satisfies the boundary 
conditions

are the positive roots of the equation (10)

a,

to find the coefficients 4^ and 
series over the interval (0,2#), i.e.
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(14)

where

(15)

(16)

(17)

(18)

(19)

(20)

(21)

85

ofe)/)

co -

2j[/n(r)cos>n^ + /n*(r)sinm(p\
m=Q

, J 2*
/oW=—

Z7r 0

12fC fAr)~~ fyo(r0)cosm6d0

1 2^ 
fn (r) = — J^o (r#)sin m OdO

Inserting (15) -(17) into (14)

i 2n oo I In

^0 O'<0 = — J^0 (r9 + E “ f^0 O'0)c°s m 6(16 
o m=l 0

co 2n

costw^ + ^— J(//O(r6')sinz?2^(9sinm^ 
zn=l 71 o

Inserting (18) into (13) and comparing the coefficients

1 7'1t °O

— ko(r6')c/6' = Ey4o>*/i
' ,=o

h 2n °o
— fi//o(r0)cosmM0 = ^Ami,J,

o -=*

— (i//o(r0)sinm^ = ^,Sn,,’ 

o

Multiplying both sides of (1 9) by J0(koj,u) and integrate over o to a
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(22)

r = u i = jand

We obtain

(23)

(24)

(25)

(26)

Inserting (24 —26) into (12) we obtain

a2x

86

1
21t

a

Sd0 \uy/0{u9)jm(kmiu)du 
0

m=0 n=l

oo a

IL 4», p/0 (kaJ, u}Jo (kol, rjdr 
i=l

2x
Joos TH 
0

2x a

r Jy/o(w0)7(9po(fco/a)iu
/ 0 0

sinh£m(Z-z) 
sinh kmI

e
na Jm+\\kni,)

2

1 
^2fe)

x^(^5r)
m \ m, ’ /jsin/w# sin THjfcZ#

Aoi

^cos m 0 cos m(f)d 3 ^ui//Q(u3\jm{km)dux
_ 0 o

Similarly

2

2^- a

Jsin medd \uy/o{u0}Jm\kmiu)du 
0 0

2x a

j<//o(r0)d0 pJ0(A:07 u)du =
0 0

j 2x a
~ \y/o(u,0)de \uJ0(k0l,u)iu = 4,,. ^a2jf(k0l)

0 0 2-

1
"2
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•Uv)

m=n n=l

mi
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APPENDIX 2

V2i^ = -4^p (1)

(2)

2
X

(3)
I a

Inserting Equation (3) into (1) we obtain

22

m

(4)= 4^9

now we seek p also as

(5)

There equation (4) because

2
-4^„„)

(6)

88

cos[zw(^ - (O

cos[m(^ -

cos[(^ - ^>)]sin^—

a J
■ ( 

'ml

a

npmsr
ap(r,^>,z)=^Pmm

mus

= 0

r 
m a

^Pnins

a

mns '

Let seek the solution y/ as

^mns 
m,n,s

t

Sin ' ~ m

vV = ^X^,..
m,n,s

cos[m((i-(iS0)]sinf^b,

which goes to zero at z = 0, z = /r = a the boundaries of the cylinder

Differentiating example (2) twice with respect to z and r we obtain V ij/ as

\2
n i— +IJ

7tnz
I
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Since

Then

2"

0 (7)

Hence

A, (8)

Therefore

/

Now we are suppose to find (3mns Going Back to equation (5)

ml

(10)

39

Multiplying both sides of this equation by one of the eigenfunctions and 
integrating over the volume of the cylinder

•cos[zn(^-^J]sinp^ .

cos[m((0-£,)]sinU

( I J
nB r r'nis'

a

a

npm,r
a

pm, 
a

Pmns[ -,4r £,,, ,

p(r> <*>*)=£ A™ 
mns

■ ftmns___ -

(r)2 + (W J

a

~^7lB‘mns
7V2 Amns

2x i 7= E A™ fcos[m(^ - </>o Jsi
mns o 0

5—^ 4V,=X-
mns

a 2n e
^rdr ^d(f) ^dz sin Jn, 
000

nz . 7tnz , 
in 7T—sin—dz*

\2
« I
7 +
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a

(11)0

From the R. H. S.

(12)

ri = n

dr =

m - m

(14)P^0Zo)

Substituting Equation (14) into equation (9) we obtain

90

s’ = s

a

J' 
0

2

”-/Vo 
a

Pmns
a 2x

\d<t>o x
0 0

r 71 P m" r
< a

•4-

Therefore in the summation we are left with only Pmnpd^[jm+i(nP^ (13) 

Hence Equation (10) becomes

2k

7 . 7tn'z . 7mz , jsin---- .sin---- dz = l
o *

J m

\Jm
0 \ fl

n P m. r')
a J

jcfe0 cos[m((# - (#)]sin 
0

| o’k.,(»/>„>?

fl )

,2

2
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where

12 *

k+l(*Am)+

m

91

"I* J}

G^U2>)=Yr 
mns .

<//(r,(M) = ^rodrc j^0 '$dzoG(rfa\rofa')p(rofa,,) (15) 
o 0 o

pm, 
a

[32|7r3/?M(2n + l)j

a
xp,„sr

a

_ « _

8/ (tt 2/fl2 )cos[w(^ - 4>0)]

\2 
n i

Ljj

Jo

. ( Ttzn ) . f nnz ) _ sml — |sm| —— \.J,

The field inside the cylinder containing a uniform distribution of charge of unit
density i.e. p(ro^0zo) = 1 is obtained by integrating equation (15) and this gives

sin ^(2„ + l) .

7mz

I
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APPENDIX 3

(1)

Eq.(4.20) are then given by.

(2)

Construction of the Green function in Eq.(l) is conceptually similar to the

homogeneous equation.

(3)= 0

1960)

92

The Green function corresponding to eq (4.20) in chapter 4 satisfies (See Love, 

1972)

— qrfin.N

form as|w|-»oo

solution tend to exp(± A)- The solution Eq. (3) with the correct asymptotic are

E„=

as can be verified by substituting Eq.(2) into Eq. (20) and using Eq. (1)

and then implements the “boundary conditions” implied in Eq.(l). The two 

can be found from a study of its asymptotic

Qn^n.N

Here we sketch the solution of the second order difference equation (Eq 20, 

chapter 3) For convenience, we will suppress the superscript m, but the same

equation, with different coefficients Z™ has to be solved for each values of m,

independent solutions of Eq. (3)

In that limit, q —> 2 cosh /z,. And the ratios Gn+] N

Gn+1,N

Gn+\N ^n.N+l

+ Gn-l,N

-2cosh/z15nW+ Gn,-1,N

given in terms of the continued fraction as (see, for details, Milne-Thompson,

/G„tN for the

familiar cases in electrostatics. One first finds the solutions of the

for each values of N. Here 8nN denotes Kronecker delta. Solutions of
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9n+l “

(4)
9n+2 “

(7n-l

#n-2 "

Eq. (4) can be written as recursion relations among CCn and fin:

(5)£ =

Which provided a simple method for their calculation by iteration. From the

symmetry properties of P^2, Q”V2 and their derivatives (they remain

= qn in Eq. 19. Using this fact ininvariant under n —> -ri), it follows that q.

and therefore only one set of coefficients needs

to be calculated. Rewriting Eq. (4) as

(6)

93

n> N + 1 
n<N-\

1
Qn ~ Pn-X

1

= Ahi

1
Qn+3

Gn,N

Eq. (5), it is seen that a,

Gn+l,N

Gn-\,N

— an+fin.N’

1
<?n-3

1____
1

1

1
1

1

= «n+l

'n=P-n>
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are

which gives the following equation :

= 1

(7)= 1

from

which follow from Eq. (6). Solution of the set of

linear equations in Eq . (7) yields.

(8)

(9)
k

94

+(«

6»(n - N) fl 
k=N+\

Pn-2^N-\,N

Substituting Eqs. (6) and (8) in Eq.(2), we

^Pn-2 N-l.N

{(2 cosh -a,

JV-1 

at+0(fl-<U 
k=n

(2cosh/zl N+\

Qn ~ aN+i " Pn-\

N+2 N+1,N

'N+l Pn-\ )

_ aN+l ~ Pn~1

and GN_iN

(2 cosh/I,-gA, )/?„_!
4 N ~ aN-\ ~ Pn-\

Gn-i,n

GN+l,N

GN,N

GN-l,N

GN,N

and GN+2N

w+1-A-1K.W+2coshA1-^}

Gn.N

Eq.(6). These equations can be further simplified by using PN_2 - qN^ = - 1/A^-i

finally obtain for the coefficients En

two quantities, we use the “boundary conditions” 

onEq.(l)at n = N-l,N,N + \,

where we have substituted G„ . „
/v — ltN

_____
~~ aN+\ ~~ Pn-1 )

can be determined from Eq.(6) recursively. Once GN+KN 

specified. To calculate these

QnG^^ — 2 cosh

CO

En = E TT

 (2 cosh - at

and aNJr2 <3n+i ~ ^/aN+\ ?

— °In+2GN+^N
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Appendix 4

Application of Curvilinear coordinate

(1)

(2)

95

is called Lame’s coefficient of the coordinate q{ at the point P. (Z2 and L3 of 
the coordinates q2 and q3 are defined in a similar manner).

Ox
2

+
\2

+

whore is the step fatafc, i.e <;(,)», if 0, 0 otherwise.

are Lame’s coefficients .

If the point P(x,y,z)has the curvilinear coordinate qx = 
q2 then 1116 differentials of the radius vectors drqv
of the coordinate lines and the differentials of their arcs dr^ are determined as

Let p{q^q2,q3} be an arbitrary point in space, Px(qx + ^qi,q2,q3) a point lying 
on the q} -line of the point P, and let \PP}\ be the length of the arc PPX. Then the 
number

f dz V— \dqv= Lve 
\d(iv)dsa

Ippj 
Lx = lim t-

(v = l, 2,3), where Lv

In order to obtain an expression for the Laplace operator, we can write the 
expression for the divergence of an arbitrary vector a, as

A coordinate system is said to be specified in space if every point P is 
associated with a triple of numbers g15 q2, q3, distinct triples corresponding to 
distinct points in space. The numbers qi9 q2, q3 are called the coordinates (or 
curvilinear coordinates) of the point P = P(q l9 q29q3).
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1diva (3)

(4)92

We their obtain the Laplace operator as div grad u which is

' LXL2 du1
(5)

(i) Cylindrical coordinate systems

(6)

(7)

96

x = rtvs(p 
y = rsva(p 
z-z

l+A, 
^3

d 
4--------

^3 I L3 ^3

d A r— + 
dr)

d I 
4-------

^2

The following coordinate systems are commonly used.

grad u =

_ d
+ Sq2

LXL3 du '
Z2 dq2 y

. „2 i f a f l2l3 du 'IAw = V u =--------- ----  —2—1-----
Lx dq{ y

a=‘A
r dr

1 d2 
r2 dcp2

(A>-J{L2L3a,

Here L{ = L3 = 1, L2 = r
Hence, in cylindrical coordinates, r,(p,z

d
+ dz2

1 du
4------------e

L2 dq2

here a^+a^+fl,^

The gradient of the scalar filed is also given

(1) In this system the distance r from the point P to the z-xis is taken for 
Qi: Q\ = r(0 r < co), q2 = r is an angle formed by the projection of the radius 
vector OP pm the xy-plane with the positive direction of the x-axis (0 < q> < 2n) 
q3 = z being the z-coordinate of the points P. Cylindrical coordinate are related 
with rectangular Cartesian coordinates through the following set of equations

1 du --------e 
L,dgi "

1 du
+ L,dq,^

(iii) Spherical coordinate system.

In this system qt = r is the length of the radius vector of the point P(0 < r < co), 
q2=0 \s the angle between the positive direction of the z - axis and the radius 
vector OP of the point P(O<0<zr\ being the angle between the positive

X
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(8)

(9)

where // ranges from O to oo, r} from O to and O from 0 to In.

with respect to eq (2)

97

direction of the x-axis and the projection of the radius vector OP on the xy- 
plane (0 £ q> < 2/r) .Again the relation to the Cartesion coordinates are given as

The toroidal coordinates are related to the Cartesian ones through the following 
set of equations

x = rsin#cos<p 
y = r sin# simp 
z = rcos#

A point anywhere in space can be defined in Toroidal coordinate system as

■ ZJ 9 I 
sin#— +a# J

(ii) Toroidal Coordinates: A point P anywhere in space can be defined by 
//,77,^. The coordinate //describes a ring of circles. The radius of the circle 
decreases progressively, and its center moves in from oo to point L on the x axis 
as p. increases from 0 to oo. For a given //, rj traces a circle of fixed radius as 
it goes from 0 to 2n. With 77 = 0 furthest from the z - axis, and 77 = n nearest 
The coordinate is the azimuthal angle about the z axis.

V = -t— 
r1 dr dr

a sinh /icoscp y - ---------------- -
cosh //-COS 7]

asxxvq z = ——----------- -
cosh//-cos 77

J l d2
r2 sin2 # dcp2

=1, L2 = r, and L3 = r sin #. Hence from eq(5) we obtain

a sinh cos <p 
cosh//-cos77

1 a
r2 sin# 6#
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(10)z,=z2 =

and hence Laplace of y/ in given as

1V> (11)+

We again set

fcosh // - cos 77 F(/z, 77, (p) (12)

and find that the Laplace equation reduces to

dF\
(13)

(14)

98

L] sinh p dp d?7 J sinh2 p dip

The solutions of Laplace’s equation in toroidal coordinates are therefore given 
in terms of the series as

a 
cosh p - cos 77

a sinh p 
cosh p - cos 77

d2ip
.2

cos(«7) + <sin(«77)14„

+ -F = 0 
n

L3 =

1 d2F 
sinh2 p d<f>2

[C„

1 d ( 
— . ■— < 

sinh p dp
. . dF\ d2F sinh p— +—- +

dp) dp2

Ci(cosh^)+ ^^".(cosh/z)].
2 2

d ( dip\ d ( Ly
LjSinh/z-^ +— L2 —

cos(mj)+bm sin(?n^)]

The (f) factor is cos(w^) or sin(/H^) and since is a periodic coordinate, m is 
zero or a positive integer to ensure continuity. Coordinate 77 is also periodic, so 
that the 77 factor must also be cos(«77)or 801(7277) with n zero or an integer.

00 00

V = Vcosh/z-cos;/ £ £ lam
m=Q n=0

d r
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(10)

and hence Laplace of y/ in given as

Q ri
(io

We again set

<// = ^/cosh // - cos 7 F(p, 7, (p) (12)

and find that the Laplace equation reduces to

(13)

(cosh//) + Bm„g"i(cosh//)]. (14)

99

The solutions of Laplace’s equation in toroidal coordinates are therefore given 
in terms of the series as

Of CAR*

cos+ sin(n?7)14

cos(w^)+Z?w sin(w^)]

a sinh // 
cosh // - cos i]

a 
cosh /z - cos 7]

i__ a_
sinh p dp

Lt = ^3

1
^ = 7T • L Lj sinh p dp

d2F 
eA2 +

.. dF I sinh p— +
Sf)

1 d2F 
sinh2 p d(j)2

£, d2ip 
sinh2 p dtp2

+ -F = 0 
n

\P"\ mn n-L

Lx sinh //—+ —f L2 —1 +
^7) d7< )

The (f> factor is cos(w^) or sin(w^) and since is a periodic coordinate, m is 
zero or a positive integer to ensure continuity. Coordinate 7 is also periodic, so 
that the 7 factor must also be cos(«7)or sin(«7) with n zero or an integer.

OQ 00

= ^/cosh^-cos/; £ [am
m=0 n<=0

dip
dq
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