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Abstract

Drug-like compounds are most of the time denied approval and use owing to the unexpected clinical side effects and
cross-reactivity observed during clinical trials. These unexpected outcomes resulting in significant increase in attrition rate
centralizes on the selected drug targets. These targets may be disease candidate proteins or genes, biological pathways,
disease-associated microRNAs, disease-related biomarkers, abnormal molecular phenotypes, crucial nodes of biological
network or molecular functions. This is generally linked to several factors, including incomplete knowledge on the drug
targets and unpredicted pharmacokinetic expressions upon target interaction or off-target effects. A method used to
identify targets, especially for polygenic diseases, is essential and constitutes a major bottleneck in drug development with
the fundamental stage being the identification and validation of drug targets of interest for further downstream processes.
Thus, various computational methods have been developed to complement experimental approaches in drug discovery.
Here, we present an overview of various computational methods and tools applied in predicting or validating drug targets
and drug-like molecules. We provide an overview on their advantages and compare these methods to identify effective
methods which likely lead to optimal results. We also explore major sources of drug failure considering the challenges and
opportunities involved. This review might guide researchers on selecting the most efficient approach or technique during
the computational drug discovery process.
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Introduction
Drug research and development pipeline entails the following
steps: (a) target identification and validation, (b) hit to lead
molecule generation, (c) lead molecule optimization and
characterization, (d) drug formulation and delivery, (e) pharma-
cokinetics and drug disposition, (f) preclinical drug candidate
identification and (g) bioanalytical testing and clinical trials [1].
Computational drug discovery has over the past few decades
become very relevant mainly due to the reduced risks, time, cost
effectiveness and resources as compared with the traditional
experimental approaches [2]. This has been made possible due
to the improved computational power and in silico methods.
These complement experimental approaches by streamlining
the research scope and guiding in vivo validation [3]. Discovery
of sildenafil and thalidomide is one of the successes in the
application of computational approaches to the drug design [4].
Traditional drug development from scratch to its availability in
the market costs approximately $2.558 billion over a period of
10 to 15 years [1]. With this huge investment, the success rate
of a drug progressing to the market is about 13% [1]. Rejection
of potential drugs particularly during phase II and phase III
clinical development is associated with unexpected clinical side
effects and cross-reactivity. This result is significantly increasing
attrition rate [5]. These unexpected outcomes centralize on
drug targets which may be disease candidate proteins or genes,
biological pathways, disease-associated microRNAs, biomarkers,
crucial nodes of biological network or molecular functions [6].
This could be linked to inadequate knowledge on the drug
targets, undesirable pharmacokinetic expressions upon target
interaction or off-target effects. This challenge relies on the
methods and population data used to identify targets especially
for polygenic diseases, and this therefore serves as a major
bottleneck in drug development. It is also due to the first
fundamental stage of the drug development which is identifying
and validating drug targets of interest for further downstream
analysis [7]. This highlights the need for modulating drug targets
to ameliorate the disease state observed and achieve the desired
biological response by elucidating off-targets as observed
in promiscuous kinase inhibitors [8, 9]. Experimental drug
target identification approaches rely on the characterization
of proteins of interest followed by the experimental validation
using techniques, such as gene knockouts, animal studies and
site-directed mutagenesis [10]. However, identifying drug targets
through these methods is difficult as predicting off-targets
which is almost impossible [11]. Off-target effects paved the
way for the ‘magic-bullet paradigm’ characterized by maximally
selective drug-like molecules [12].

In the post-genomic era where there is an exponential
increase in open access biological data generated by bioinfor-
matics pipelines, the drug discovery field has been revolution-
ized such that it involves the use of various biological datasets
which enables scientists to understand comprehensively the
biological system relevant to the disease in focus. Thus, the need
arose to implement in silico methods that would facilitate design-
ing and redesigning of drug-like molecules exhibiting desired
bioactivity profiles as well as predicting and validating drug
targets [13]. This is critical particularly considering the increased
incidence of widespread drug-resistant strains threatening
the efficacy of common drugs. Computational methods have
brought about transformed rational and systematic approaches
for exploring efficiently the space of drug combinations in
combinatorial drug discovery.

In silico methods have strongly impacted on identifying new
targets for old drugs [14, 15] as well as predicting side effects [16]

and anatomical therapeutic indicators of approved drugs [17].
This implies that the inception of computational approaches
has contributed immensely to a systematic rational guidance
of the processes and in reducing the period required for the
drug’s availability in the market [18]. This is possible based on
the hypothesis that drug side effects would be minimized if the
drug candidate is potent and highly selective [19].

The baseline criteria for selecting drug targets require the
potential target(s) to be essential and indispensable to disease
outcome. For instance, in genetic diseases, gene therapy involves
identifying genes associated with mutations. However, with
infectious diseases, the criteria require understanding the
complex interplay between the host and the disease-causing
organism or pathogen [20]. Host target(s) therefore must be
unique and homologous to the microbe. Pathogen protein targets
homologous to the host are eliminated in the computational
drug discovery process primarily to avoid any drug reaction
complications [21]. In addition to that, the effectiveness of a
drug is highly dependent on the target protein(s) in the microbe
or essential biological pathway(s) or process that is key to the
survival and propagation of the pathogen in the host system.

Leveraging analytical platforms and omics databases
containing biological information, computational approaches
have become core components in the drug discovery pipeline
[10]. For instance, analytical platforms help elucidate essential
chemogenomic relationships between available target data and
potential drug candidates or molecules, thereby facilitating the
prospects of identifying novel druggable targets, possible off-
targets, drug leads and potential repurposable drug candidates.
So, it is expected that powerful computational models including
but not limited to network-based and machine learning methods
would lead to better prediction and understanding of drug target
interactions and underlying disease molecular mechanisms.

The computational approach to drug discovery has helped
to translate biological data into functional knowledge treatment
interventions against diseases at a faster rate. This approach is
characterized by providing a system view of the disease in rela-
tion to the biological system of interest. This helps elucidating
important processes and molecular and cellular networks usu-
ally difficult to explore experimentally. The ability to reveal such
patterns helps to design predictive models to identify disease
biomarkers and potential drug targets [22]. Considering complex
diseases which are distinguished by their ability to dysregulate
biological functions and pathways, computational methods pro-
vide the means to understanding the regulatory mechanisms
through gene regulatory network analysis [22]. Also, the develop-
ment of a computational integrative framework using biological
processes and functional datasets (protein–protein interactions
between disease-causing pathogens and host) together with
pharmaceutical datasets facilitates the extraction of drug targets
and the identification of drugs possible for repositioning or
repurposing against an infection [10, 11].

In the field of pharmacogenomics and pharmacomi-
crobiomics, computational techniques have facilitated the
prediction of drug metabolism by elucidating inhibitors and
substrates of specific enzymes involved in metabolism. This
has led to an in-depth understanding of in silico evaluation of
absorption, distribution, metabolism, excretion and toxicity
(ADMET) properties though interactive optimization of leads,
therefore mitigating the tendency of drug failure [2, 23]. For
instance, in silico models have been proposed for cytochrome
metabolism prediction [24].

Some review studies on in silico approaches to drug design
exist, but they mainly focus on protein-associated methods
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in candidate drug target and drug-like molecule prediction [2,
3, 13]. Here we systematically dissect current computational
approaches and tools applied in predicting or validating various
drug targets and drug-like molecules. Furthermore, we present
the strength of each approach and compare them to guide
readers in their choice. We conclude by summarizing the
sources of failure in the drug discovery process, taking into
perspective the challenges and the opportunities they present
to scientists.

Current computational approaches for drug
target and potential drug candidate
identification
Network-based analysis approach

The study of disease mechanisms to develop drugs or vaccines
has evolved from single gene or protein analysis to an
entire multiscale analysis of genomics, pharmacogenomics,
metabolomics and proteomics relevant to the disease of interest.
This approach consists of integrating these different large-
scale datasets from heterogeneous sources to generate disease-
specific networks, fostering a whole genome-based integrative
approach to achieve a global view. The disease-specific network,
which is a biological entity composed of sub-units connected as
a whole, is used to elucidate essential nodes which could serve as
targets due to their influence within the network [25]. A typical
example is observed in the case of drugs, such as artemisinin
combination therapies (ACTs) and clozapine for treating malaria
and schizophrenia, respectively, which interact with multiple
targets to deliver the required therapeutic response [26, 27].
This integrative approach presents a multiview perspective of
elucidating causal genes, relevant pathways and novel drug
targets. Also, it increases the reliability in predicting novel drugs
and/or putative drugs as well as engineering drug targets to
overcome drug resistance [28–30]. Integrating different biological
datasets requires developing algorithms and systems biology
tools together with the use of network analysis and functional
genomic databases (Supplementary Table 1) to unify the dataset
[30]. These tools (Supplementary Table 1) are used to interpret
the interactions within the network by identifying sub-networks
and regions of similarity and dissimilarity that best explains
the disease of interest to narrow down the research scope for
further enrichment and validation analysis to improve disease
classification [31, 32], disease-associated gene prioritization
[33, 34] and drug discovery [30].

The network-based approach is recommended when iden-
tifying targets and drug candidates for most complex diseases
[30]. It allows uncovering biological mechanisms involved in
development and differentiation of complex diseases [22]. The
technique is implemented in analyzing nodes and edges in
various types of networks including chemical structure and
reaction networks, protein structure networks, protein–protein
interaction networks, signal transduction networks, genetics
interaction networks and metabolic networks. Supplementary
Box 1 describes key terms and concepts in the network-based
approach. Moreover, network-based approaches sometimes
involve computational analysis of metabolisms during the life
cycle of the pathogen. Network construction categorizes various
metabolism processes into pathways and their reactions and
enzymes [35]. This breakdown enables analysis of the entire
network more conveniently. Flux balance analysis together
with in silico knockout studies is implemented in studies
during network analysis to identify vital reactions or biological

processes essential for the pathogen’s survival, thus narrowing
down the drug target search space [36]. There are evidences on
the use of cellular networks to elucidate complex genotype-to-
phenotype relationships among diseases and their associated
genetic variants [37]. This technique has become an effective
tool for predicting drug target associations.

Network-based approaches have been widely used to predict
candidate targets and drug target interactions. Luo et al. [29]
developed an integrative pipeline capable of integrating various
data types as well as coping with the noise and the incom-
plete and high-dimensional nature of datasets by learning low-
dimensional vector representations of essential features. They
identified novel interactions between three drugs and cyclooxy-
genase which was experimentally verified and further showed to
be potential for preventing inflammatory diseases. Also, various
biological network pipelines and algorithms have been devel-
oped to predict essential molecular processes and pathways to
enhance drug research, thus controlling pathway cross-talk and
possible drug resistance [22, 28, 38].

Overall network-based approaches require a comprehensive
understanding of the interaction network particularly regions
where the potential drug target is located. This therefore
requires pathway and enrichment analysis to accurately classify
the potential drug target. Figure 1 describes the summarized
workflow of the network-based approach.

Data mining (DM)/machine learning (ML)

With the exponential increase in biological data from high-
throughput and combinatorial synthesis, the technological
and paradigm shift to data mining and machine learning-
based methods have enhanced the extraction and processing
of these datasets by combining both biological knowledge,
computational tools and algorithms. These indispensable
techniques are gaining most attention and credibility because
of the reliability and accuracy in predicting key property values
of compounds and its significant success rate [39]. This is
attributed to their abilities to identify and map relationships
between large number of compounds which is difficult to obtain
using sub-structural similarities only [13, 40]. Also, machine
learning techniques are implemented in both system and
molecular methods to predict drug targets through proteomic,
microarray and chemogenomic data mining and analysis [6].

Data mining approaches are primarily characterized by an
automatic sub-setting of essential information from a pool of
datasets. Data mining models ranging from simple paramet-
ric equations derived from linear methods to complex mod-
els derived from nonlinear methods [41] play a critical role in
uncovering significant patterns in chemical and pharmacolog-
ical property space essential for drug discovery. In addition to
that, advanced machine learning models and algorithms such
as support vector machines on databases [42], neural networks
[39], logistic regression [43], naive Bayesian classification [39,
44], binary kernel discrimination [43], partial least squares [45]
and random forest [39] as described in Supplementary Table
2 have been significantly instrumental in drug research. For
instance, they have contributed to determining pattern recogni-
tion underlying the relationship between compounds and cal-
culated molecular descriptors or experimental measurements
within a large chemogenomic space [13, 41]. ML and DM attempt
to find correlations between specific activities or classifications
for a set of compounds and their features, thus enabling clus-
tering similarities among drug-like compounds in multidimen-
sional space [13, 41].
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Figure 1. Generalized work flow of a network-based approach in predicting

potential drug targets and drug candidates.

For example, Fatumo et al. [35] in their research to identify
Plasmodium falciparum drug targets developed a machine
learning-based metabolic network analysis tool that identifies
essential reactions/enzymes as drug targets from the metabolic
network of the pathogen. The authors identified 46 essential
reactions of which 19 had been reported in literature. A
study conducted by Sturm et al. [46] applied the neural
network machine learning approach to develop an algorithm
for microRNA target prediction. The algorithm developed can
predict potential target sites with or without the presence
of a seed match. The model was based on machine learning
and automatic feature selection using a wide spectrum of
compositional, structural and base pairing features covering
current biological knowledge.

In relation to both structure-based and ligand-based virtual
screening, the combination of DM approaches and a collection
of selective pharmacological agents enables mapping of such
chemogenomic libraries into biological activity space to predict
potential targets [47]. Particularly, when training sets are avail-
able, ML methods are more effective in predicting the physical,
chemical and biological properties of small molecules as com-
pared with ab initio methods [48]. DM and ML methods are used
to develop a quantitative structure–activity relationship (QSAR)
or quantitative models for drug-like property predictions and
chemical risk assessment [49]. Also, in silico in vitro absorption,
distribution, metabolism, excretion and toxicity (ADMET) mod-
els and in vivo pharmacokinetic models for optimizing molecu-
lar properties and predicting pharmacokinetic parameters have
been developed using ML and DM techniques [50, 51]. These
models facilitate the selection of leads with improved strong
binding affinity to targets.

Application of DM in target similarity search enables the
identification of putative protein targets. This approach involves
data mining of the pathogen’s sequence and querying against
drug target databases to identify putative drug targets with a
suitable druggability index [25]. In a study conducted by Mogire
et al. [18] to identify putative drug targets against Plasmod-
ium falciparum, a target similarity search of the parasite pro-
teome against drug target databases such as Tropical Disease
Research (TDR) target database [52], Therapeutic Target Database
(TTD) [53] and Search Tool for Interaction of Chemicals (STITCH)
database [54] was performed.

ML models are implemented in predicting sensitivity of drug
candidates based on cell line response or the chemical properties
of the drugs or a combination of both approaches. This improves
the power of designing and systematically analyzing experimen-
tal screenings against panels of cell lines to identify potential
drugs or repurposable drugs [55]. This approach is critical in
personalized medicine in terms of leveraging genomic traits to
drug sensitivity.

Menden and colleagues developed machine learning models
that integrate chemical properties of drugs and genomic
alterations such as copy number variation and sequence
variation from cancer cell lines [55]. Their model predicts
sensitivity of genomically characterized cancer cell lines to the
drugs to ascertain the drug’s efficacy [55]. This model has the
ability to optimize experimental design of drug cell screenings by
estimating missing half maximal inhibitory concentration (IC50)
values [55]. In addition, their model predicts essential target-
specific association information between compounds and
the target.

Nidhi and colleagues developed a multiple-category Laplacian-
modified Bayesian model that works on the basis of chemical
structures to predict targets for all MDL Drug Database Report
(MDDR) database compounds [47]. The model generated was
trained on extended-connectivity fingerprints of compounds
from 964 target families characterized by various levels of
annotation in the World Of Molecular BioAcTivity (WOMBAT)
chemogenomics database. It was then used to predict the top
three most likely targets for all MDDT database compounds.
Nigsh et al. [56] compared the predictive power of the multiple-
category Laplacian-modified Bayesian model and the Winnow
algorithm, a linear threshold learning algorithm. The Winnow
algorithm implements an additive machine learning rule to
minimize ligand-target prediction-related errors [56]. It was
observed that both algorithms predict slightly different targets
due to compounds that are exclusively retrieved by each
algorithm.
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Figure 2. Generalized work flow of data mining and machine learning methods to biological data in predicting potential drug targets and drug candidates.

Recently, Polypharmacology Browser (PPB2), a new target pre-
dicting tool, has been reported [57]. This tool implements neural
networks and Naive Bayesian classification models to classify
ligands based on their molecular fingerprints or descriptors [57].
Figure 2 describes a summary of application of data mining
and machine learning approaches in drug discovery whereas
Supplementary Box 2 describes key terms and concepts in the
ML and DM approaches.

Reverse/inverse docking

This computational approach is used for identifying putative
binding proteins from protein or genomic databases for small
molecules with known biological activity [58]. Reverse or inverse
virtual screening or inverse docking is a technique that facili-
tates developing hypothetical relationships among protein tar-
gets by chemical probing [59]. It is the structural-based approach
of virtual screening unlike the ligand-based methods which
require pharmacophores, two-dimensional (2D) fingerprints and
three-dimensional (3D) similarity search [4]. It aims to identify
drug targets by screening drug-like molecules against rightful
protein databases [60]. Molecular docking simulation involves
an optimization process of finding the most favorable 3D bind-
ing conformations of the ligand to the target [50]. The targets
are assessed and scored using scoring function algorithms and
ranked according to best binding modes and interaction [61].
Interestingly, reverse docking outputs could be used as a profile
to characterize the druggability index or enzyme promiscuity
of the protein structures [62]. The reverse docking approach
remains a valuable computational technique for exploring alter-
native uses for existing drugs in terms of drug repurposing and
drug rescue [4]. It therefore plays a vital role in the discovery of
novel drugs, drug leads, natural products and other ligands for
treating neglected diseases which most pharmaceutical indus-
tries are hesitant to invest in due to the fear of inadequate return
on investment [63, 64].

Unlike conventional forward docking approaches wherein
a variety of ligands is docked to a target, the reverse docking
process involves screening to a set of different protein targets,
a ligand or compound, to identify potential partners through
statistical analysis of binding modes within the targets [58]. The
framework of this technique is dependent on the knowledge of
the distribution of nonhomogeneous proteins, their complexi-
ties due to the combination of domains and their conformational
flexibility due to multiple folds [65, 66]. Due to that, a ligand

fits or docks into the functional binding pocket of a specific
protein fold based on its three-dimensional conformation and
thus interacts with specific protein residues [59]. This technique
enhances elucidation of mechanisms of action and control pos-
sible off-target effects. Various tools described in Supplementary
Table 3 including TarFisDock [60], idTarget [67], INVDock [63] and
AutoDock [68] have been proven to be very useful in drug leads
and target prediction [69, 70]. These tools implement different
scoring functions to approximate the standard chemical poten-
tials of the system [68].

For instance, idTarget implements the AutoDock4 robust
scoring functions [67, 71]. These functions have been shown
to have better statistical performance in terms of binding mode
prediction [71] and binding site searching efficiency even at
the dimensionality of 30 [72]. TarFisDock, a valuable tool for
target prediction, was developed from DOCK version 4. The
tool however is still under improvement due to associated false
positives because of inaccuracies in the scoring function for
reverse docking [60]. These errors could be associated with
less coverage due to limited target datasets and inability to
incorporate protein flexibility during docking.

INVDock implements a scoring scheme capable of perform-
ing binding competitive analysis as well as evaluating the inter-
action energy between docked structures [63]. It is based on
the concept of binding competitiveness such that a drug that
binds to its target noncompetitively is likely to be less effec-
tive. AutoDock implements a machine learning-based scoring
function that explores the Iterated Local Search global optimizer
approach [68]. The scoring scheme is based on the advantages
of knowledge-based potentials as well as extracting empirical
information from conformations of receptor-ligand complexes
and the experimental affinity measurements [68].

Inverse docking can predict off-targets for ligands aside facil-
itating predicting activity and selectivity of unknown ligands
against known targets [73]. It has been applied in evaluating the
binding energies (usually expressed in kcal/mol) and modes of
libraries of compounds against a panel of proteins. This evalua-
tion results in a defined group of protein-ligand complexes, thus
enhancing the identification of lead compounds for subsequent
biological tests. This application reduces cost involved in com-
pound development and biological screening as well as reduces
synthetic efforts and time required for de novo drug discovery
[59].

Lauro et al. [73, 74] applied the above method to natural
bioactive molecules to investigate their efficacy against a panel
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of cancer-associated proteins. The idea of polypharmacology led
to the development of a selective optimization of side activities
(SOSA) approach which enhances the generation of new biolog-
ical activities [75]. The challenging part of this approach is the
construction of a panel of target proteins taking into account
careful selection of proteins not belonging to the same folds.
Also, the accuracy and reliability of this approach are limited
when 3D structures of the protein targets are not available.

Regardless of the advantages of reverse docking methods in in
silico drug research, they are complex as compared with forward
docking techniques such that larger target structure datasets are
required to increase the coverage and predictive power [58, 62].
Also, aside its associated biases in inter-protein scoring yielding
false positives [76], it requires high computational costs [62, 77].

Biological activity spectra (Biospectra) analysis

There are several reported evidences to the fact that most drugs
establish therapeutic response through multiple-target modula-
tion [78–81]. The ability to predict such functional consequences
of biological perturbations between the genome or proteome of
an organism and biologically profiled compounds is indispens-
able in drug research. In relation to that, analysis of the modular-
ity effect drug-like molecules impact on the target’s function is a
must to understanding the expressed phenotype or therapeutic
response capacity of the molecule [82, 83]. Biospectra simply
refers to the activities of compounds across potential targets
which could enable investigating structure–property relation-
ships [84]. Biospectra analysis is a probabilistic structure–activity
relationship approach that complements experimental affinity-
based studies [83]. The technique herein is used for measur-
ing quantitatively the patterns and dynamics of the functional
activity of a molecule across multiple potential targets [83, 84].
It is therefore a determinant of the inhibitory or stimulatory
effect profiles of drug-like molecules on targets within a system.
Studies have shown that the association between proteins, drug-
like molecules and Biospectra serves as the building block for
developing probabilistic approaches to drug discovery [79].

This method provides a firm foundation in determining
quantitatively the correlation between molecular structures and
biological effect profiles by providing estimates of the therapeu-
tic effect of a molecule. Estimation is done by constructing a
nonlinear multivariant model which provides an unbiased tool
for investigating associations between structure and function
similarities of molecules [83]. Such analysis is relevant for
predicting drug targets for orphan compounds based on the
concept of chemical structure similarity [84]. It provides the
means to classifying molecules based on Biospectra similarity
as well as predicting interacting capabilities of molecules
with multiple targets. This classification mechanism allows
for the identification of molecules with similar function with
no prior information concerning the target which is difficult
using experimental techniques. Biological activity spectra are
an essential indicator of molecular property descriptor [85].
This method was implemented by Fliri and colleagues to
identify agonist and antagonist effect profiles of medicinal
agents on brain dopamine receptors belonging to the GPCR
superfamily [83]. This technique facilitates the ability to conduct
spectra similarity and hierarchical clustering methods through
profile similarity measurements, thus establishing quantitative
relationships between chemical structures and biological
activity spectra [85]. Biospectra analysis has been shown to be
critical in mining pharmacology datasets as well as predicting
possible adverse drug effects based on profile similarity with

drug-like molecules known for adverse reactions [84]. Similarity
between molecules is measured using the Tanimoto similarity
coefficient [86], cosine correlation [87], Euclidean distance [88]
or city block distance [89].

Paolini and colleagues presented a comprehensive mapping
of pharmacological space by applying a probabilistic model
on integrated structure–activity relationship data [79]. They
discovered 836 human genes discovering verified targets for
small molecules. This integration enables the identification
of unique molecular targets through construction of a ligand–
target matrix. Since similar drug-like molecules express similar
biospectra, this approach is useful for drug repurposing because
it facilitates the translation of biological response data into
chemical structure design [83]. This implies that the ability to
correlate off-target effects with biological spectra would help
map unto new targets where the response might be beneficial
to address different diseases. For example, sildenafil initially
developed to treat angina expressed a side effect of prolonged
penile erection, and this resulted in a change of the treatment
focus of the drug [90]. However, biospectra analysis is highly
dependent on experimental data obtained from various ligand-
binding assays or a matrix of targets which could be difficult.

Ligand-based in silico target prediction

A ligand-based computational approach is the framework for
ligand-based drug discovery. It is based on the concept of chemi-
cal structure similarity, which states that similar ligands or com-
pounds would bind to similar targets with almost the same bind-
ing affinity and express similar biological responses [65]. This
concept of similarity has been extensively utilized in lead dis-
covery and optimization primarily because it takes into account
the polypharmacological nature of drugs [91]. Also, it is essential
for quick investigation on primary and secondary targets as well
as selectivity among target families [84]. The approach herein
involves the interplay between characterized protein targets and
characterized ligands with similar chemical structure, properties
and pharmacophoric features to enable predicting biological tar-
gets. This is achieved by mapping the structures of compounds
known to modulate cellular phenotypes (mostly natural prod-
ucts or orphan compounds) unto chemogenomics databases
containing biologically profiled compounds with known targets
[84].

In that regard, cheminformatics and bioinformatics have
developed mapping models including but not limited to
topological-based models, Bayesian classification models and
atom pair-based models from available bioactivity data using
machine learning and statistical methods [78]. These models are
implemented in mapping compounds into the chemogenomical
space or bioactivity database considering either 2D or 3D
molecular descriptors [65, 92, 93] and chemical fingerprints [94,
95] for measuring similarity among structures to predict targets.
An advantage of using chemical fingerprints in designing
models is that it enables back-projections of correlation between
characterized proteins and compounds unto orphan compounds
with the knowledge that similar compound structures would
exhibit similar affinity chemical fingerprints [84]. Molecular
descriptors are numerical features extracted from the com-
pounds based on their molecular properties [65, 92] whereas
chemical fingerprints are high-dimensional vectors that encode
the presence of sub-structural fragments [94, 95].

Ligand-based approaches to target prediction provide
the platform to understanding the relationships between
structurally dissimilar but functionally related proteins based on
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their ligand similarity, thus helping to form a hypothesis that can
be verified using statistical methods. Similar to biospectra, the
ligand-based approach is more informative for pharmacology,
medicinal chemistry and biochemistry [78, 96]. Similarity among
structures is measured using Minkowski distance metrics and
the Tanimoto similarity coefficient and its complement, the
Soergel distance [65]. The Tanimoto similarity coefficient can be
applied to 3D structures [39]; however, this metric is susceptible
to molecular size because it fails to account irrelevant features
of a large molecule, thus resulting into odd size dependencies
[65]. These measurable features of compounds have been
implemented in developing tools such as Similarity Ensemble
Approach (SEA) [78], Swiss Target Prediction (STP) [97], SpiDER
[98], SuperPred [99], Polypharmacology Browser [100], HitPick
[101], Prediction of Activity Spectra for Biologically Active Sub-
stance (PASS) [102], MOst-Similar ligand-based Target inference
approach (MOST) [103], Candidate Ligand Identification Program
(CLIP) [104] and Chemical Similarity Network Analysis Pulldown
(CSNAP) [105]. These tools are described in Supplementary Table
4 which integrates fingerprints and/or structural similarity to
predict ranked targets from ligand–target datasets in order of
decreasing similarity score.

The ligand-based target prediction approach is not feasible
in the cases of predicting targets with no or only a small num-
ber of bioactive ligands and ligands that exhibit activity cliffs
characterized by high structural similarity but different activity
[13, 106].

Derived or hybrid approaches

The derived approaches can be classified into two sub-groups:
(a) target-based in silico prediction and (b) genomic analysis
approach (see Supplementary File, Section 5).

The target-based approach involves the use of 3D struc-
tures of essential protein targets to identify potential ligands or
drug-like compounds by investigating protein–ligand complex
interactions and conformations. Genomic analysis involves the
analysis of genetic data to explore their associations to specific
phenotypes. This approach presents the ability to investigate the
effect of genetic variants on a disease and functionally validate
drug-targetable genes using genomics particularly in precision
medicine.

Comparing different approaches in
computational drug discovery
As described previously, several computational drug discovery
approaches have been suggested, including genomic, biospec-
tra, network-based, machine learning/data mining and virtual
screening/molecular docking simulation approaches. Although
these methods individually have their specific areas in drug dis-
covery that best describes their usefulness, they have the ability
to be integrated to understand complex biological systems in
order to address challenges in computational drug discovery.
This is because technological advancement has led to the gen-
eration of various dataset types describing biological systems
from different dimensions, some of which are sequencing, gene
expression activity and proteomics [107].

In predicting and assessing the pharmacological effects of a
drug, the combination of these techniques has been instrumen-
tal in determining drug target interactions (DTIs) with high effi-
ciency and low cost. In comparison to experimental techniques
(in vitro and in vivo methods), computational methods have pro-
vided the technicalities to systematically determine all possible

interactions to clearly elucidate the pharmacological patterns
[108]. Higher-dimensional levels of predictions revolve around
systematic analysis of biological complex networks and large
integrated biomedical datasets, and as such, using a combinato-
rial approach is highly essential. Some approaches share similar
concepts but applied in different forms in addressing similar
issues; thus, combination helps to compensate for individual
limitations. This in turn increases the accuracy of predicting and
minimizing possible adverse effects [109]. For instance, molecu-
lar docking principles in elucidating DTIs require 3D structures.
Due to that, there are associated biases and false positives when
high-quality 3D structures are not available [108]. Unlike molec-
ular docking approaches, ML drug target interaction-predictive
models have the extended capacity of taking into considera-
tion not only the 3D structures of targets but also molecu-
lar and protein sequence descriptors [108]. However, network-
based methods in predicting DTIs to investigate pharmacolog-
ical effects apply recommendation algorithms implemented in
recommender systems [110] and link prediction algorithms [111]
rather than 3D structures and molecular systems. Also, network-
based methods are relatively faster compared with the other
methods. This is because the DTI network of interest can be
represented as a matrix on which calculations can be computed
easily [108]. Aside that, they have the extended capacity of
predicting drug effects through simple dynamic processes such
as random walk, resource diffusion and collaborative filtering on
biological networks [108].

For example, Paolini and colleagues studied the polypharma-
cology interaction network for human proteins by constructing
the ligand-target matrix using a Laplacian-modified Bayesian
probabilistic model to explore the relationships between chemi-
cal structure and targets by integrating diverse structure activity
relationship data [79]. They observed 35% of 276,122 active com-
pounds within their database to hit more than one target while
65% hit a target, thus indicating extensive promiscuity of drugs
and leads across targets.

Data mining is highly essential in chemogenomics to mine
chemogenomic datasets. This is critical in establishing the rela-
tionship between a set of potential drug targets and ligands.
However, the interplay among a holistic picture of the biolog-
ical system (network), molecular docking approaches and ML
methods in chemogenomics presents a broader scope to inves-
tigate the effects of compounds on gene/protein expression.
To efficiently identify and assess the effects of specific protein
targets on specific drugs, robust molecular docking systems that
implement ML and DM models have been developed to optimize
the performance of predicting the drug’s effect across molecular
networks [112]. These models provide the platform to avoiding
unnecessary assumptions by specifically accounting for binding
effects most often challenging to model without ML and DM
techniques. Utilization of this approach in designing scoring
functions has significantly enhanced the accuracy of estab-
lishing binding affinities of various protein-ligand complexes
[113]. Ballester and colleagues developed a competitive high-
performance scoring function that implements Random Forest
to capture binding effects [113]. The flexibility of their scoring
function compared with other rigid functions ensured that it
has high predictive power when tested on trained datasets.
Another application of this approach is developing machine
learning-based scoring and binding affinity functions integrated
with molecular docking tools to address difficulties involved
in molecular docking. Hsin et al. [109] developed a computa-
tional screening approach using machine learning and docking
packages to investigate the polypharmacological nature of com-
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pounds against potential targets within a biological network.
The model developed can assess binding modes and predict the
best binding mode to targets. This approach increases the relia-
bility and confidence in assessing the binding conformations of
compounds and predicting best modes [112]. It also helps to rate
the performance of various docking packages as well as compen-
sate for scoring function-associated errors [141, 115]. Advanced
ML methods provide the technique to investigate drug effects in
preclinical research and clinical trials. Also, they provide an effi-
cient way to systematically and analytically extract meaningful
biological information from clinical trial datasets. This therefore
facilitates the ability to design the chemical structure of drugs to
modulate drug target interactions. However, it is of importance
in that the ability to interpret such datasets is challenging and
as such requires experience and high technical skills.

Deep learning, a class of machine learning, has strong gener-
alization ability and feature extraction capability. It has emerged
as a powerful tool capable of identifying highly complex pat-
terns in both homogeneous and heterogeneous datasets. In
computational drug discovery, the deep learning method has
enhanced prediction of bioactivity, de novo molecular design,
virtual screening, activity scoring and synthesis prediction [42,
51, 114]. This is mainly because it has fewer generalization errors,
thus yielding impressive results as compared with traditional
machine learning. It has been extensively applied in functional
genomics in discovering DNA-binding motifs and determining
sequence specificity of DNA and RNA-binding proteins [115].

Data mining and machine learning models are implemented
in computational drug discovery for unbiased mining and anal-
ysis of genetic datasets mostly in the focus of personalized
medicine [116]. The aim of personalized medicine is to discover
novel drugs and biomarkers for specific patient groups, most
suffering from complex disorders. Developments in this field
are applied most often in gene and immuno-oncology therapies
for highly personalized and specific group treatments, respec-
tively [117]. In view of that, the genomic approach together
with ML methods provides the platform for identifying disease-
associated genes (particularly rare disease variants) and their
corresponding mutations from methods like DNA sequencing
and genome-wide association studies [117]. This helps to trans-
late functional results into treatment and strategic measures.
Analyzing genetic functional networks with ML and DM meth-
ods enhances the chances of identifying novel biomarkers and
drug targets. For example, the combination of a network-based
approach and ML methods plays an increasingly significant
role to predict novel mechanisms underlying disease-specific
targetable genes or pathway associations. This in turn offers the
opportunity for finding new applications for drugs as well as pre-
dicting potential adverse effects. Bari and colleagues developed a
machine learning-assisted network inference algorithm capable
of identifying class II cancer-associated genes in a cancer net-
work generated from support vector machine models [118]. Also,
this combination has been implemented in target fishing using
chemical fingerprints [119].

Integration of ML and DM approaches together with network-
based techniques is of noteworthy importance in analyzing bio-
logical networks to identify a potential set of genes or path-
ways that could serve as targets in combinatorial therapy. The
rationale behind this combination strategy is not only to over-
come resistance and limitations of monotherapy regimens but
also to overcome the complexities of complex diseases such
as cancer and HIV [120, 121]. In that regard, predictive models
based on ML, DM, network-based and sometimes molecular
docking approaches have been developed to investigate the syn-

ergistic effects of drug-like molecules on specified targets [122,
123]. These models incorporate heterogeneous datasets such as
cell signaling pathway and transcriptomic and pharmacological
datasets [123]. The models have the extended ability of providing
insights into biological mechanisms underlying the synergistic
combination.

The combination of the genomics approach with molecular
docking simulations is mostly applied in discovering novel lig-
ands or drug-like molecules to treat infectious diseases.

Computational assessment measures
Assessment measures from computational approaches in drug
discovery field evaluate the performance of the model or algo-
rithm used for prediction. These measures are very critical to
ascertaining the model’s reliability, predictive power and ability
to differentiate between positive and negative sets and exploring
their relationships [128]. These include, but not limited to, pre-
cision, recall, classification accuracy, sensitivity, specificity and
area under the curve (AUC) related to receiver operating char-
acteristic (ROC) analysis of models or algorithms particularly
in relation to DM and ML. Most of these measures, including
those listed above, require the ground-truth sets of positives
and negatives, which may be a problem [129] as these sets,
especially the set of negatives, are not always available. Thus,
models and algorithms which may produce the log-likelihood
of the data, the Akaike or Bayesian ‘An Information Criterion’
(AIC or BIC) or the so-called Schwarz’s Bayesian criterion (SBC)
can be used to assess model or algorithm performance. AIC, BIC
and SBC are based on likelihood function, scoring how well the
model or algorithm explains data while penalizing the number
of estimated parameters.

Source of drug failure: challenges and
opportunities
Incomplete knowledge on the biological mechanisms
underlying certain diseases

A critical drawback in the success story of drug discovery is
associated with poor understanding of the underlying mecha-
nisms behind some diseases such as nervous system disorders,
chronic kidney disease, idiopathic pulmonary fibrosis and other
complex disorders [124]. Inability to elucidate genetic variants
or biomarkers or pathways or proteins involved in the etiology
of such diseases continues to be a challenge to drug research.
Due to that, specific targeted drugs or vaccines have not yet been
developed. Researchers have shown that in-depth knowledge of
disease mechanisms and the elucidation of critical biomarkers
would contribute significantly to drug development [124]. This
could be associated with inadequate specific datasets avail-
able to help unravel the mystery behind a disorder. Due to
that, there is an intensified scientific research into bridging
the gap between disease mechanisms and drug development.
Combination of omics, chemistry and clinical datasets together
with advance ML techniques has been promising in exploring
potential targets. A typical example is Alzheimer’s disease, in
which various mechanisms are been identified through exten-
sive research [125].

Drug resistance development

Drug resistance has been a major burden in drug use. More often,
drugs, particularly, those targeting disease-causing pathogens in
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infectious diseases, lose potency with time primarily as a result
of selective pressures resulting in drug-resistant strain devel-
opment. This challenge contributes to disease resurgence and
increased morbidity and mortality rates. In complex diseases,
drugs targeting human cells develop resistance through factors
like epigenetics, DNA damage repair and epithelial mesenchy-
mal transition [126]. In general, drug efflux and drug inactivation
are common factors linked to drug resistance. This phenomenon
continuously necessitates further research and alternative treat-
ment development. In addition, researchers are investigating
the core biological associated activities resulting in resistance to
identifying novel approaches to counter such effects.

Inability to reproduce generated disease-related
datasets

Data reproducibility crisis remains a critical challenge in the
post-genomic era. Data validation is a measure of the confi-
dence and integrity of the datasets. It is of noteworthy that
inconsistencies in results obtained from replicating experiments
in different laboratories breed unsuccessful translation of dis-
covery research because of the level of mistrust in the data
[124]. This situation significantly slows the rate of translating
biological data into functional knowledge and treatment inter-
ventions. However, it is argued that such differences in results
could be attributed to confidence interval defined for the inde-
pendent study as well as inadequate knowledge in essential
statistical methods and tools used. Researchers have proposed
that external validation and explicit reporting of experimental
datasets could possibly increase reproducibility [124]. Also, this
challenge presents the opportunity for researchers to develop
standardized procedures tailored to each working environment
to ensure reproducibility of results and continuity of scientific
knowledge.

Complex unpredicted metabolism networks

Unpredicted interactions and mechanisms within a network due
to associated kinetic interactions result in an incomplete picture
of the cellular behavior [129]. However, overassumptions in mod-
eling hinder the ability to develop accurate models to answer the
biological hypothesis. As a result, algorithms developed for such
models produce results that deviate from the true expectations.
This therefore presents a challenge in modeling the system
to overcome unknown associated metabolic fluxes. As such,
there is a higher likelihood of missing essential information
such as pathways and biological activities essential for drug
research. Also, there are off-target metabolic interactions that
models fail to account for due to modeling challenges. Off-
target metabolic interactions can be responsible for expected
and unexpected responses which most of the time are side
effects. In overcoming these challenges and minimizing drug
failures and associated adverse effects, predictive models for
individual target networks that simultaneously detect metabolic
similarity of associated metabolic pathways using joint learn-
ing algorithms can be implemented to investigate latent
interactions.

Conclusion and Perspectives
In this review, we have presented various computational
approaches and tools essential for in silico extraction of drug
targets, predicting potential drug-like candidates, analyzing

bioactivity profile and elucidating possible off-target effects in
drug discovery. These approaches complement experimental
techniques in drug development. Furthermore, we highlighted
on the application of machine learning, data mining, genomics
and network analysis techniques in investigating the dynamic
patterns within integrated datasets from multiple sources to
predict critical nodes, pathways and biological processes. These
techniques are relevant in achieving a global perspective of
the biological systems to investigate the interplay between
multiple independent genes or proteins on disease etiology. This
therefore provides the platform to elucidating a set of functional
biological entities for drug and vaccine development. We
discussed various molecular docking simulation techniques. We
showed the specificity of each approach in terms of predicting
potential drug-like molecules and protein targets in drug devel-
opment. We emphasized on the application of these methods
in drug repurposing and reuse particularly in addressing drug
resistance and drug development for orphan diseases, thus
contributing to limiting the risk of drug failure during trials. Also,
we highlighted on the combination of machine learning and
molecular docking techniques in designing various predictive
models to investigate the structural and chemical properties
of ligands or drug molecules and validate their efficacy in
drug development. We have shown that these approaches
can be combined to compensate for limitations of individual
methods thereby increasing the predictive power. Finally, we
presented sources of drug failure looking at the challenges and
opportunities involved.

Due to the specificity of individual techniques, we recom-
mend the use of multiple approaches, particularly integrative
approaches in stages of computational drug research to compare
and validate results prior to further experimental test, thus
avoiding false positives and irreproducibility. Also, multiple per-
formance assessment measures must be performed in validat-
ing results. We suggest the development of a comprehensive tool
that produces systematic results based on individual approaches
that give the user the opportunity to performance meta-analysis
of results.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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