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Abstract: Solid tumors display complex biology and most therapies including 

chemotherapy cannot prevent therapy resistance and relapse. Most therapeutics target cancer 

cells, but recent data suggest the presence of cancer stem cells as cells with self-renewal and 

tumorigenic abilities. Cancer stem cell markers have been suggested to have prognostic value 

and can be targeted during cancer treatment and in resistant disease. CSCs have been 

postulated to play significant contextual roles in tumor initiation, progression, therapy 

resistance and metastasis. CSCs have thus been targeted by new generation cancer drugs. The 

transcriptional expression of several CSC markers in different cancers was evaluated by 

searching publicly available The Cancer Genome Atlas (TCGA) and Gene Expression 

Profiling Interactive Analysis (GEPIA) databases. We report here new findings on expression 

and prognostic significance of CSC markers in several cancers by examining the expression 

of CSCs markers in tumor tissues versus the adjacent normal tissues. We found that CSC 

markers were mostly highly expressed various tumors such as colon, lung, pancreatic and 

esophageal cancers. No CSC marker is expressed in the same pattern in all cancers and 

individual CSC marker expression was not linked to patient survival. This analysis calls for 

continued research on CSCs and clinical evaluation of the CSC markers in relation to 

prognosis of cancers in large population samples. Novel cancer drugs ought to target CSCs, 

cancer cells and tumor microenvironment variations.  
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1.0 Introduction 

Huge progress has been made in the treatment of cancer but its health burden continues to 

increase globally, raising the need for novel therapeutic strategies to contain cancer [1, 2]. 

Whilst current anti-cancer strategies target genetic and epigenetic changes in cancer cells, 

most of these have proved to be unsuccessful [3-7]. Detailed analyses of tumors have 

revealed the important role the tumor microenvironment (TME) play in tumor maintenance 

and therapy resistance [8-14]. Within the tumor microenvironment are several stromal cells 

and the extracellular matrix (ECM) that contributes to tumor response to therapies and 

metastasis [5, 6, 15].  

 

For many cancers, clinical factors, such as tumor stage and differentiation, have been 

reported to be associated with prognosis of the disease [5, 6, 16-22]. Many times the 

utilisation of these clinical factors is not enough for risk stratification and prediction of 

disease outcome. This can result in wrong clinical prognosis predictions. For many cancers, 

including those that are not well studied such as esophageal cancer, there is an urgent need 

for the identification of reliable prognostic factors that can accurately predict clinical 

prognosis. Several studies have shown that the prognostic value of cancer stem cells depends 

on the type of cancer and the histological subtype [23-28]. In addition, several recent studies 

have revealed that a major mechanism for post-therapeutic recurrence and metastasis of 

cancers is the presence of therapy-resistant cancer stem cells [5, 6, 29-31].  It has been 

demonstrated that chemoresistance to 5-fluorouracil and cisplatin in several cancer patients 

may occur through the increased expression of microRNAs such as miR-200 and cancer stem 

cell-related proteins [32, 33]. Furthermore, increased expression of the multidrug resistance 
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protein 2 (MRP2) has been shown in the tissue samples of patients resistant to neo-adjuvant 

chemotherapy including 5-fluorouracil, doxorubicin and cisplatin [34-36]. 

 

Thus the focus of many studies has been on a subpopulation of cells with stem cell-like 

characteristics called cancer stem cells (CSCs) [5, 6, 37]. CSCs have been identified in many 

cancers such as breast, glioma, melanoma, ovarian, head and neck cancer [5, 38-45]. Besides 

being important in the initiation, maintenance and relapse of tumours, CSCs have been shown 

to modify neoplastic cell behaviour and aggressiveness as well as therapeutic response. CSCs 

are rare tumour cells with the ability to self-renew and can proliferate extensively. They also 

have the ability to resist chemotherapy and radiotherapy treatments [5, 38, 40-42, 46-49]. 

These cells can form tumour-spheres in vitro and have been shown to be enriched for 

tumorigenic cells by their ability to form xenograft tumours in severe combined 

immunodefficient (SCID) mice [50-54]. CSCs can be isolated through various methods 

including the use of antibodies against various surface markers such as cluster of 

differentiation 44 (CD44), CD24, CD133, and CD166 [46, 53-57]. Many studies have shown 

that CD44+/CD24- phenotype is associated with a worse prognosis in many cancers 

including breast cancer [58-61]. Other markers such as CD90, aldehyde dehydrogenase 1 

(ALDH1), EpCAM and p63 have also shown to be useful in this regard [62, 63]. Besides the 

use of antibodies, CSCs can be isolated and identified via the use of side population cells. 

Side population cells in tumours are a small subpopulation of cancer cells with stem cell-like 

properties and can be isolated and identified by dual wavelength FACS analysis [56, 57, 64-

66]. In several cancers, it has been shown that the side population tends to enrich CSCs and 

can be isolated using Hoechst 33342 dye [64-66].  
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Overall, CSCs are an emerging target for cancer therapy and any therapy targeting CSCs hold 

great potential for improving cancer treatment and outcome. In this study we performed a 

bioinformatic analysis to determine the prognostic value of CSC markers in several cancers. 

We utilized the publicly available databases The Cancer Genomic Atlas (TCGA) 

(http://cancergenome.nih.gov) and Gene Expression Profiling Interactive Analysis (GEPIA) 

(http://gepia.cancer-pku.cn) to determine CSC markers’ (ABCB1, ABCG2, ALDH1, CD24, 

CD44, CD90, CD133, CXCR4, EpCAM, ICAM1 and NESTIN) expression in tumor tissues 

versus the adjacent normal samples and in relation to patients’ overall survival. Our analysis 

reveal that whilst CSC markers’ expression is upregulated in tumor tissues versus normal 

samples, individual CSC markers expression may not be associated with overall patients’ 

survival.  

 

2.0 Materials and Methods 

2.1 Bioinformatic Analysis of CSC markers’ RNA-seq analysis 

This study utilised the publicly available TCGA and GEPIA databases and did not involve 

human subject recruitment nor animal studies. Whole genome messenger RNA expression 

levels of ABCB1, ABCG2, ALDH1, CD24, CD44, CD90, CD133, CXCR4, EpCAM, ICAM1 

and NESTIN were examined in tumor and normal adjacent tissues (Match TCGA normal and 

GTEx data) in relation to patients’ survival outcomes. TCGA and GEPIA data was accessed 

for different cancers in March 2020 via the respective portals. The GEPIA website contains 

web-based tools that allow in-depth analysis of the CSC markers expression within the 

TCGA and GEPIA databases.   
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2.2 Statistical Analyses 

Statistical analyses were performed using GraphPad Prism software (version 6; San Diego, 

USA). In addition, significance of differences was tested by Student’s t-test and one way 

analysis of variance (ANOVA) test. Statistical significance between groups regarding overall 

survival was performed by the Kaplan-Meier analysis with the log-rank test (95 % confidence 

interval). GEPIA use statistical analysis that divided patients into high and low expression of 

CSC markers. The same number of patients for each group was used to analyze survival 

chance. Statistical significant was set as P < 0.05.   

 

3.0 Results 

3.1 Significance of Cancer stem cells in tumorigenesis 

3.1.1 Colon Cancer 

One of the most deadly cancers, colorectal cancer, has been reported to contribute above 10% 

of diagnosed cancers worldwide and causes approximately 9 % of all cancer deaths each year 

[67, 68]. The incidence of colorectal cancer is increasing globally and patients’ survival 

varying greatly among countries. Intense research continues to unravel the biology and 

mechanism of progression of colorectal cancer [69].  

 

Bioinformatic analysis showed that CSC markers, CD24, CD44, CD90 and CD133 

expression was significantly enhanced in colon adenocarcinoma (COAD) compared to 

adjacent normal tissues (Figure 1). Surprisingly, another CSC marker, ALDH1 expression 

was significantly reduced in tumor samples versus normal samples (Figure 1). Consistent 

with the above results, 10 out of 12 colorectal cancer specimens showed medium to high 
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CD44 protein expression based on immunohistochemistry-based data available at Human 

Protein Atlas database (www.proteinatlas.org). In the same vein, 12 out of 12 colorectal 

cancer specimens showed medium to high CD133 protein expression based on 

immunohistochemistry-based data available at Human Protein Atlas database. However, 

association analyses of CSC markers’ expression with prognosis of COAD revealed that there 

were no significant differences in survival between patients expressing high CSC markers 

compared to patients expressing low levels of the same CSC markers (Figure 1).  

 

Figure 1. (A) Cancer stem cell markers’ gene expression profiles in colon adenocarcinoma 

(COAD). The expression of CSC markers CD24, CD44, CD90, CD133 and ALDH1 in colon 

adenocarcinoma tissues and adjacent normal tissues (Box plot) based on TCGA/GEPIA 

database. Data is based on TCGA COAD samples n = 275; normal = 349. CSC markers 

showing significant differences between tumor and normal samples are shown in red with * 

indicated for p < 0.05 (B) Kaplan-Meier overall survival analysis of COAD patients by CSC 

markers expression in TCGA data set (high expression (n=135), low expression (n=135)).   
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3.1.2 Lung cancer 

The most commonly diagnosed cancer globally is lung cancer and its incidence reported to be 

around 11.6 % of the total cases of cancer [1]. Lung cancer results in more cancer deaths than 

any other cancer, accounting for around 18.4 % of the total cancer deaths [1]. Several risk 

factors have been identified and include exposure to chemicals, tobacco, smoke and asbestos 

[4, 67, 70, 71].  

 

With the exception of CD133 and ABCG2 expression, which showed similar expression in 

lung adenocarcinoma (LUAD) tissues versus controls, the expression of CSC markers, CD24, 

CD90 and EpCAM was significantly upregulated in TCGA LUAD samples compared to 

adjacent normal samples (Figure 2). Consistent with the above results, 10 out of 12 lung 

cancer specimens showed medium to high EpCAM protein expression based on 

immunohistochemistry-based data available at Human Protein Atlas database 

(www.proteinatlas.org). Analysis of association of CCS markers expression with prognosis of 

LUAD cancer patients revealed no significant difference in overall survival between LUAD 

cancer patients expressing low and high CSC markers (Figure 2). 
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Figure 2. Cancer stem cell markers’ gene expression profiles in lung adenocarcinoma 

(LUAD). The expression of CSC markers CD24, CD90, CD133, ABCG2 and EpCAM in 

lung adenocarcinoma tissues and adjacent normal tissues (Box plot) based on TCGA/GEPIA 

database. Data is based on TCGA LUAD samples n = 483; normal = 347. CSC markers 

showing significant differences between tumor and normal samples are shown in red with * 

indicated for p < 0.05 (B) Kaplan-Meier overall survival analysis of LUAD patients by CSC 

markers expression in TCGA data set, high expression (n=239), low expression (n=239)). 

 

3.1.3 Pancreatic Cancer 

One of the most lethal cancers is pancreatic cancer with estimates showing that above 

338,000 people were diagnosed with the disease worldwide in 2012 [72, 73]. One of the 

major histological subtypes is pancreatic ductal adenocarcinoma and show aggressive growth 

resulting in high mortality rate [74, 75]. Pancreatic adenocarcinoma (annotated as PAAD 

within TCGA and GEPIA databases) is the most common pancreatic cancer, with estimates 

showing that 9 out of 10 people with pancreatic cancer have this type of cancer [76-78]. 
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Using the TCGA database samples, our bioinformatic analysis showed that, ABCB1, CD133, 

CXCR4, EpCAM and NESTIN expression was significantly upregulated in pancreatic 

adenocarcinoma (PAAD) tumor samples versus adjacent normal samples (Figure 3). In 

agreement with the above results, 9 out of 12 pancreatic cancer specimens showed medium to 

high CD133 protein expression based on immunohistochemistry-based data available at 

Human Protein Atlas database (www.proteinatlas.org). Assessment of the association of CSC 

markers expression with prognosis of PAAD cancer patients revealed no significant 

difference in overall survival between PAAD cancer patients expressing low and high 

CD133, CXCR4, EpCAM and NESTIN CSC markers (Figure 3). Low expression of ABCB1 

was associated with low survival in PAAD patients (log rank p= 0.0059) (Figure 3). 

 

Figure 3. Cancer stem cell markers’ gene expression profiles in pancreatic adenocarcinoma 

(PAAD). The expression of CSC markers CXCR4, Nestin, CD133, EpCAM and ABCB1 in 

pancreatic adenocarcinoma tissues and adjacent normal tissues (Box plot) based on 

TCGA/GEPIA database. Data is based on TCGA PAAD samples n = 179; normal = 171. 

CSC markers showing significant differences between tumor and normal samples are shown 

in red with * indicated for p < 0.05 (B) Kaplan-Meier overall survival analysis of PAAD 
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patients by CSC markers expression in TCGA data set, high expression (n=89), low 

expression (n=89)). 

 

3.1.4 Esophageal cancer  

Esophageal cancer is one of the most understudied cancers and has been associated with a 

poor prognosis [4, 79]. Several risk factors have been identified but new molecular targets are 

needed for effective therapy and improvement in patients’ outcomes.   

 

Our analysis revealed no difference in expression of commonly used CSC marker, CD44, in 

tumor tissues compared to normal tissue (Fig 4). Other CSC markers, including ALDH1A1, 

CD90, ICAM1 and EpCAM showed upregulated expression in ESCA tumor samples versus 

adjacent normal tissues (Fig 4). Our analysis revealed no association between CSC markers’ 

expression and overall survival between patients with low and high expression of CSC 

markers (Fig 4).  
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Figure 4. Cancer stem cell markers’ gene expression profiles in esophageal carcinoma 

(ESCA). The expression of CSC markers CD44, CD90, ICAM1, ALDH1 and EpCAM in 

esophageal carcinoma tissues and adjacent normal tissues (Box plot) based on TCGA/GEPIA 

database. Data is based on TCGA ESCA samples n =182; normal = 286. CSC markers 

showing significant differences between tumor and normal samples are shown in red with * 

indicated for p < 0.05 (B) Kaplan-Meier overall survival analysis of ESCA patients by CSC 

markers expression in TCGA data set (high expression (n=91), low expression (n=91)).   

 

4.0 Discussion 

Cancer continues to cause morbidity and mortality globally, with its incidence on the rise in 

many developing countries. Current cancer therapies eliminate most cells within a tumor but 

well advanced cancer can progress to drug-resistant disease and metastasis [80]. In addition, 

tumor heterogeneity contributes to therapy failure and fatal disease outcomes. Several lines of 

evidence point to therapy itself, especially chemotherapy, causing tumor heterogeneity and 

thus poor outcomes in patients. Furthermore, according to the CSC theory, most therapies fail 

to prevent relapse partly due to the presence of a small subpopulation of tumor cells called 

cancer stem cells [3, 5, 6, 37, 81]. CSCs reside in the tumor microenvironment and have been 

proposed to contribute towards the development of therapy resistance and relapse as they can 

become quiescent. Developing novel strategies against treatment-resistant cancer cells, 

including CSCs, remains a significant challenge. Despite the considerable progress made in 

the treatment of cancer in recent years, challenges still remain. Among the many challenges 

faced in drug development include high cost, low success rates and the poor understanding of 

the cellular mechanisms driving the disease [3, 81]. Thus, there is need for new targets and 

novel drugs or therapies. A new era of CSC-targeted therapies, in combination to 

conventional therapy, require a deeper understanding of CSCs properties and mechanisms of 

resistance to therapy.  
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 Whilst several studies have demonstrated the presence of tumor cells with self-renewal and 

tumor initiating properties, the identification of markers for such cells is still an ongoing 

process [5, 17, 38, 39, 82-84]. Elaborate experiments by Bonnet and Dick revealed that 

leukamia cancer initiating cells (CSCs) express specific surface markers [85]. In addition, 

CSCs have been implicated in metastasis. The origin(s) of CSCs is an area under intense 

scrutiny at the moment with new evidence pointing to normal stem cells [86]. To complicate 

the matter further, markers for tumor initiating cells are not universal, with CSCs from 

different tissues expressing different markers. Our bioinformatic analysis showed that CSC 

markers are mostly highly expressed in patient tumor samples compared to adjacent normal 

tissues. For example, the expression of CD44, also referred to as Homing Cell Adhesion 

Molecule (HCAM), was expressed highly in colon adenocarcinoma samples. This suggests 

that CD44 expression may be used during diagnosis as well as linked to development of 

therapy resistance. Overall, CD44 may predict COAD prognosis. In many cancers including 

breast cancer, CD44 together with CD24 are used to isolate and characterise CSCs [5, 46]. 

The utility of individual CSC markers is not proven hence markers are usually used in 

combination.  

 

The presence of CSCs in tumors may explain the high occurrence of development of drug-

resistant disease and relapse [87, 88]. The results obtained in this analysis clearly suggest 

novel and better chemotherapeutic drugs must be developed that can provide better efficacy 

and clinical outcome for cancer patients by targeting not only cancer cells but CSCs as well. 

In addition, our analysis of the association between CSC marker expression and patients’ 

survival suggest that targeting CSCs using a single marker such as CD44 might not be 

enough to eradicate cancers. Instead the use of anti-CSC therapy in combination with 

chemotherapeutic agents could be better at eradicating cancers. For example, monoclonal 
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antibodies are one of the new strategies to treat chemo-resistant cancers [89-91]. Due to their 

specificity, monoclonal antibodies represent a promising method for interfering with a single 

target molecule with high selectivity [92].  

 

The mechanisms through CSCs develop therapy resistance including chemoresistance have 

been under intense investigations [3, 5, 41, 50, 53, 65, 66, 77]. These mechanisms include 

epithelial mesenchymal transition, quiescence or dormancy, contribution of the tumor 

microenvironment factors, high expression of drug transporter proteins and enhanced DNA 

damage repair (Figure 5) [5-7, 53, 77, 93-95]. Markers of EMT and CSCs have been found to 

be co-expressed, thus linking EMT and CSCs [96]. High expression of drug transporter 

proteins including ABCG2 and ABCB1 allow CSCs to expel chemotherapeutic drugs and 

thus attain better survival than cancer cells and stromal in a tumor [97].  

 

Figure 5. Cancer stem cell properties contributing to development of therapy especially 

chemoresistance.  
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CSCs have been shown to undergo dormancy and during treatment some CSC clones can be 

induced to grow [98]. In addition CSCs display enhanced reactive oxygen scavenging 

limiting DNA damage in the process [99]. Tumor microenvironment factors and cells have 

been shown to aid cancer cells to survive chemotherapy via induction of several survival 

pathways including the MEK-ERK and TGF-β pathway [8, 9, 100]. In addition, hypoxia, 

cancer-associated fibroblasts and cancer associated macrophages are known to induce stem 

cell-associated genes, sustaining CSCs within the tumor microenvironment [101-103]. Some 

of the therapeutic strategies against CSCs include targeting the tumor microenvironment, 

CSC markers, survival pathways and drug transporters proteins (Figure 6).  

  

Figure 6. Cancer stem cell-targeted therapies can take the form of surface marker inhibition, 

drug transporter proteins inhibition, targeting survival signaling pathways and the CSC niche 

or tumor microenvironment. Figure adapted from Dzobo et al, 2016 [5].  
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5.0 Study Limitations 

Further study to validate the involvement of these CSC markers in tumor initiation and 

progression is in progress and much needed. Future studies should carefully validate the 

results obtained in this study and others to evaluate CSC markers as biomarkers with putative 

prognostic roles.  

 

6.0 Conclusions 

This study show that CSC markers are expressed in many cancers and the targeting of these 

cells would be beneficial to cancer patients. CSC properties are relevant to our understanding 

of therapy resistance especially chemoresistance. Research into the role of CSCs in cancer 

initiation and progression holds great potential in the development of novel therapeutic 

strategies effective in eradicating ESCC. Importantly, this study provides evidence that 

individual CSC markers may not be useful as valuable predictors of poor prognosis in cancer. 

Such markers may be useful when used in combinations.  
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LIST OF ABBREVIATIONS 

ALDH  aldehyde dehydrogenase  

ANOVA analysis of variance 

CD  cluster of differentiation 

COAD  Colon adenocarcinoma 

CSCs  Cancer stem cells 

ECM  Extracellular Matrix 

EMT  Epithelial to mesenchymal transition 

ESCA  Esophageal carcinoma 

GEPIA  Gene expression profiling interactive analysis 

HCAM Homing Cell Adhesion Molecule 

LUAD  Lung adenocarcinoma 

MMPs  Matrix metalloproteases 

MRP2  multidrug resistance protein 2 

MSCs  Mesenchymal stem cells 

PAAD  Pancreatic adenocarcinoma 

PAAD  Pancreatic adenocarcinoma 

SCID  severe combined immunodefficient  
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TCGA  The cancer genome atlas 

TME  Tumor Microenvironment 
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