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A B S T R A C T

Chemotherapy is one of the main therapeutic strategies used for gastrointestinal tract adenocarcinomas (GTAs),
but resistance to anticancer drugs is a substantial obstacle in successful chemotherapy. Accumulating evidence
shows that non-coding RNAs, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), can affect
the drug resistance of tumor cells by forming a ceRNA regulatory network with mRNAs. The efficiency of the
competing endogenous RNAs (ceRNAs) network can be affected by the number and integrality of miRNA re-
cognition elements (MREs). Dynamic factors such as RNA editing, alternative splicing, single nucleotide poly-
morphism (SNP), RNA-binding proteins and RNA secondary structure can influence the MRE activity, which may
in turn be involved in the regulation of chemoresistance-associated ceRNA network by prospective approaches.
Besides activities in a single tumor cell, the components of the tumor micoenvironment (TME) also affect the
ceRNA network by regulating the expression of non-coding RNA directly or indirectly. The alternation of the
ceRNA network often has an impact on the malignant phenotype of tumor including chemoresistance. In this
review, we focused on how MRE-associated dynamic factors and components of TME affected the ceRNA net-
work and speculated the potential association of ceRNA network with chemoresistance. We also summarized the
ceRNA network of lncRNAs, miRNAs, and mRNAs which efficiently triggers chemoresistance in the specific types
of GTAs and analyzed the role of each RNA as a “promoter” or “suppressor” of chemoresistance.

1. Introduction

Gastrointestinal tract adenocarcinomas (GTAs) are the most com-
monly diagnosed malignancies and a leading cause of cancer death
worldwide. GTAs mainly include three major groups, namely colorectal

cancer (CRC), gastric cancer (GC) and esophageal squamous cell car-
cinoma (ESCC). The morbidity and mortality of all of these are among
the top 10 for cancers worldwide [1]. Surgery is the primary curative
treatment for GTAs, but chemotherapy is widely used treatment for
patients who need adjuvant therapy after surgery or who have cancers
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of advanced stages. Clinical and preclinical evidence strongly suggests
that different chemotherapies including commonly combined therapies
and targeted therapies [2] are effective and necessary to treat GTAs.

In addition to certain therapeutic effects, chemotherapeutic ap-
proaches applied in GTA treatment usually run into a bottleneck due to
intrinsic or acquired drug resistance [3,4]. Intrinsic drug resistance
usually occurs in patients receiving therapy for the first time. These
patients may be primarily diagnosed with advanced cancer or may
primarily receive adjuvant treatment following surgery. By contrast,
acquired drug resistance may be developed during the second therapy
in relapsed patients. A series of cellular regulatory mechanisms are
responsible for the poor response of GTAs to chemotherapy. There are
many molecular mechanisms that affect cell resistance such as changes
in drug transport and metabolism, variations of drug targets, changes in
cell damage and cell death and acquirement of cell stemness [5,6]. All
these mechanisms can be regulated by non-coding RNAs (ncRNAs),
which has opened a new research horizon in cancer chemotherapy.

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are
common functional ncRNAs. Different modes of interactions between
lncRNAs and miRNAs have been reported: miRNA decay of lncRNAs,
lncRNAs competing with mRNAs to bind to miRNAs, lncRNAs com-
peting with miRNAs to bind to mRNA, and lncRNAs being shorten to
miRNAs [7–9]. All these interactions regulate the expression levels of
mRNAs and in turn affect core protein signals, resulting in changes in
the physiological functions of cells. However, only lncRNA-miRNA-
mRNA network has been widely reported to affect chemotherapeutic
response in GTAs. In this network, lncRNAs and mRNAs compete to
bind to the same miRNA, an association known as the competitive
endogenous RNA (ceRNA) mechanism [10].

In the process of GTA chemoresistance regulated by the ceRNA
network, mRNAs act as “effector” molecules; that is, changes in the
expression of mRNAs can always alter the expression of their proteins
[11], which directly affect the biological processes of cancerous cells
that resist anticancer drugs. LncRNAs and miRNAs usually act as
“regulators”; however, the regulation of mRNA expression by these two
is often in opposition. Therefore, regulating the crosstalk between the
abnormal expression of ncRNAs and mRNAs may be a feasible strategy
to reverse the resistance of GTA chemotherapeutic drugs and has cer-
tain application prospects to overcome chemoresistance.

Hence, in this review, we go into the different roles of “promoter” or
“suppressor”, played by lncRNAs and miRNAs in ceRNAs that regulate
the chemoresistance of tumor cells. Specially, we focus on the active
elements such as the MRE-associated dynamic factors and components
of TME that affect the efficiency of the ceRNA network in tumor cells
and speculate the potential way of these factors to alter the drug re-
sistance of cells by the regulation of ceRNA network. Importantly, we
outline the ceRNA mechanism of the lncRNA-miRNA-mRNA network
that has been reported to affect chemoresistance in each group of GTAs.
The ncRNAs here may all become new therapeutic targets for over-
coming chemoresistance in GTAs.

2. lncRNA-miRNA-mRNA ceRNA network and the corresponding
roles of these RNAs in chemoresistance of GTAs

miRNA transcripts of 20-24 single-stranded nucleotides, play es-
sential roles in post-transcriptional regulation. Mature miRNAs are in-
corporated into Argonaut-containing miRNA-induced silencing com-
plexes (miRISCs), and then bind to a short region of mRNA called a
miRNA recognition elements (MREs), which are usually located in the
3′ untranslated region (3′ UTR) of mRNA. The binding of miRNA to an
MRE leads to the breakdown or translational repression of the mRNA.
Degradation or translational repression of a protein-coding mRNA ef-
fects the level of the protein without modifying the gene sequences
[12]. One miRNA may bind to different target mRNAs with similar
MREs and one mRNA containing different MREs can also be targeted by
different miRNAs [13,14]. These characteristics establish the

fundamental principle of ceRNAs, such that binding of miRNAs can be
competed for by not only an mRNA but also other non-coding RNA
transcripts such as lncRNAs with similar MREs [10]. lncRNA, which are
more than 200 nucleotides long, do not encode any protein but speci-
fically function as gene regulators at different molecular levels, from
chromatin modification to transcription to post-transcriptional mod-
ifications [15,16].

Various lines of evidence point to the active involvement of the
ceRNA network, via lncRNA-miRNA-mRNA dysregulation, in che-
motherapeutic drug resistance in different cancers [17,18]. The mRNA,
the final target to be regulated by the ceRNA network, and its protein
expression level determine whether the cells are resistant or sensitive to
the drug. There are two possible mechanisms through which the ceRNA
network can regulate chemoresistance. In the first role, wherein the
mRNA acts as a “promoter” of drug resistance, a miRNA would be an
ideal target to overcome chemoresistance. In this instance, the miRNA
binds to the MRE of a chemoresistance-promoting mRNA to inhibit
oncogenic expression via its degradation or translational inhibition. In
contrast, the second possible role of an mRNA is that it acts as an “in-
hibitor” of drug resistance. High expression of a miRNA would be the
contributing factor to chemoresistance by downregulating the “in-
hibitor mRNA” by degrading or terminating its translation by bindng to
its MRE. In such cases, the lncRNA becomes an ideal weapon to over-
come chemoresistance by providing similar MREs to “sponge” the
target miRNA [19,20]. Based on the regulatory role of the lncRNA-
miRNA-mRNA network, we can reverse the drug resistance of tumors
by precisely targeting "promoters" or introducing exogenous "inhibitors"
to improve the sensitivity of tumor cells.

Observed from the cellular and molecular biological levels, the
change in mRNA expression effected by the ceRNA network usually
affects a series of cellular biological processes to alter chemotherapy
resistance. The mechanisms that can lead to chemotherapy resistance in
cancer cells mainly include an increase (decrease) in drug efflux (in-
flux), induction of drug inactivation, alterations in the molecular tar-
gets of chemotherapeutic drugs, reduction (induction) of apoptotic
(anti-apoptotic) gene expression, acquisition of cellular stemness and
enhanced ability of cancerous cells to repair anticancer drug-induced
DNA damage. For example, resistance to 5-fluorouracil (5-FU) in CRC
cells can be regulated by the lncRNA TUG1-miR-197-3p-TYMS ceRNA
network. TYMS, a "promoter" effector molecule, is the target of 5-FU. Its
high expression will make the cell drug resistant by combining with
excessive drug molecules [21]. Reduced expression of TYMS promotes
apoptosis and resensitizes the cells [22]. Changes in the expression of
lncRNA TUG1 or miR-197-3p can alter the expression of TYMS, which
affects drug targets and the process of programmed cell death, and in
turn affects drug resistance. Another study showed that CRC cells can
regulate the sensitivity to oxaliplatin (SOX) through the lncRNA
CASC15-miR-145-ABCC1 ceRNA network. ABCC1, as a "promoter", is a
member of the well-known ATP-binding cassette (ABC) transporter fa-
mily. It promotes intracellular-to-extracellular transport of drugs to
help cells acquire drug resistance [23,24]. Both of the high expression
of CASC15 and the low expression of miR-145, via CASC15 sponging
miR-145 to inhibit its binding with its target ABCC1, will increase the
expression of ABCC1 and, in turn, let the cells acquire drug resistance
[25]. For instance, lncRNA PCAT-1-miR-218-ZEB1 network can reg-
ulate cell resistance to cisplatin (CDDP). The promoter ZEB1 is an ac-
tivator of epithelial-to-mesenchymal transition (EMT), which increases
the resistance of cells to CDDP by increasing cellstemness [26]. In this
network, the high expression of PCAT-1 or ZEB1, promotes the drug
resistance of cells. In contrast, high expression of miR-218 inhibits ZEB1
protein expression by binding to its mRNA to inhibit EMT and improve
CDDP resistance [27]. The above examples illustrate that ceRNA net-
works of lncRNAs, miRNAs, and mRNAs play roles in the chemoresis-
tance of cancer by affecting important cellular biological processes.
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3. Effective dynamics of ceRNA network in chemoresistance

In cells that depend on the ceRNA network as a mechanism for
regulating drug resistance, the efficiency of the ceRNA network is the
determinant of the final state of chemotherapy. The main factors that
affect the efficiency of ceRNA action are the abundance and subcellular
localization of miRNAs, lncRNAs and mRNAs as well as the binding
efficiency of MREs to miRNAs.

In the ceRNA network, equal quantities of different types of the
involved RNA transcripts are required. For this reason, a miRNA’s
overall target abundance negatively correlates with the miRNA’s
average repressive strength. The RNAs must also localized in the same
compartment for ceRNA network to function normally. ceRNA net-
works usually function in cytoplasm. In addition to subcellular locali-
zation, the number and integrality of MREs have a great effect on
ceRNA activity [28]. Disruptions in the normal function of genetic and/
or epigenetic factors and processes, such as RNA editing, alternative
splicing, single nucleotide polymorphisms (SNPs), RNA-binding pro-
teins and RNA secondary structure, are highly probable events in cancer
that play important roles in disrupting the number or integrality of
MREs. We analyze the impact of the above factors on the function of the
ceRNA network, and hypothesizing that if these alterations occur in the
genes involved in chemoresistance, the effect of chemotherapy will be
improved by regulating of the ceRNA network (Fig. 1).

3.1. RNA editing

RNA editing is a post-transcriptional process that alters the se-
quence of an RNA transcript from its source DNA sequence [29]. RNA
editing works by different types of mechanisms depending on whether
nucleotides get inserted, deleted or converted [30]. The most prevalent
type of RNA editing found in higher eukaryotes including humans, is
the conversion of adenosine (A) into inosine (I) in double-stranded
RNAs (dsRNAs) via the catalytic activity of adenosine deaminase acting
on RNA (ADAR) enzymes [31]. Hot-spot targets of A-to-I RNA editing
are the introns and 5′/3′ UTRs of mRNAs, which are important features
in translation and other gene regulation activities [32]. Therefore, al-
teration of MRE in 3′ UTR by RNA editing influences the recognition
site of miRNAs, leading to notable phenotypes in tumorigenesis as well
as in chemoresistance [33,34].

Interestingly, in cancers including GTAs, RNA editing plays a major
role in carcinogenesis [35–37]. Although indirect evidence of the po-
tential capability of RNA editing in tumorigenesis has been found in
other cancers, the presence of a ceRNA network regulated by RNA
editing involved in GTA chemotherapeutic resistance still needs to be
explored. It has been reported that cellular proliferation and resistance
to methotrexate (MTX), an anticancer drug, is enhanced when ADAR1
improves the expression of dihydrofolate reductase (DHFR) in breast
cancer by editing the binding site of miR-25-3p and miR-125a-3p in 3′
UTR s of the DHFR mRNA [38]. Editing in the MREs of lncRNAs also
has a marked effect on miRNA-lncRNA interactions, which directly or

Fig. 1. The dynamic factors regulating MREs affect the ceRNA network and have potential roles in regulating the chemoresistnace in tumor cells.
A) RNA editing in the MREs of mRNAs or lncRNAs can promote chemoresistance by affecting miRNA binding. B) Alternative splicing in mRNA or lncRNA transcripts
may promote or hinder the pairing with their respective miRNAs to promote chemoresistance. C) RBP and secondary structure of mRNA/lncRNA affect the binding of
a miRNA to its specific MRE, causing chemoresistance. D) Changes in MREs due to SNPs also affect the binding of miRNAs to cause chemoresistance.
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indirectly regulate the expression of protein-coding genes responsible
for tumorigenesis. Thanks to advancement in high-throughput tech-
nologies, lncRNA editing sites present in different species are compiled
in the “LNCediting” database. The LNCediting database identified
114814 and 109788 possible editing sites that are responsible for
742855 and 731035 losses and gains of function of miRNA-lncRNA
interactions, respectively [39]. This evidence shows that edited and
non-edited MREs in mRNAs and lncRNAs may pair with different
miRNA to regulate several carcinogenesis functions. There are still
some questions that need to be addressed regarding lncRNA-miRNA-
mRNA crosstalk in GTAs. This includes the question of whether edited
MREs of mRNAs and lncRNAs influence ceRNA crosstalk, which may
promote chemoresistance in GTAs, and whether potential therapies
based on edited MREs could promote chemosensitivity in GTAs. The
possible answers to these questions could help researchers to determine
how these hotspots of RNA editing affect lncRNA-miRNA-mRNA in-
teractions and improve the chemotherapeutic outcome of GTAs.

3.2. Alternative Splicing

Alternative splicing produces multiple protein isoforms by altering
the components of the transcript. 3′ UTR shortening alters an mRNA
transcript, which in turn affects the binding of the mRNA to miRNAs. It
has been reported that many genes related to chemotherapy resistance
may be alternatively spliced, which may offer a chance to disrupt the
ceRNA network. For example, glutamine metabolism is tightly asso-
ciated with drug resistance in several cancers. It has been reported that
targeting glutamine metabolism helps to overcome CDK4/6 resistance
[40], and the lack of glutamine will recover the sensitivity of cells to
CDDP, the first-line drug of gastrointestinal cancers [41]. Recently,
researchers found that the core enzyme of glutamine metabolism, glu-
taminase, can be regulated by alternative splicing. This generates two
transcripts with distinct 3′ UTR displaying totally different affinities to
miRNA-23 [42]. It provides a basis for the functional change in the
ceRNA network. Thus, the alternative splicing influences the develop-
ment of tumor resistance.

3.3. RNA binding Proteins and Secondary Structure of RNA Transcripts

RNA-binding proteins (RBPs) play an important role in the regula-
tion of post-transcriptional processes such as RNA splicing, transport,
translation and stability. MREs in 3′ UTRs are also hotspots for RNA-
binding proteins [43,44]. RBPs can affect the ceRNA complex by al-
tering the structure of the 3′ UTR or by occupying the target site on the
mRNA, which may affect its affinity and accessibility to miRNAs [45].
Depending on the association of RBPs with mRNAs, specific RBPs could
either enhance or inhibit the binding of miRNAs to MREs, which may
lead to various disorders, including cancer [46,47]. The Hu family of
RBPs, consisting of ubiquitously expressed HuR (HuA), HuB, HuC and
HuD, are important mammalian RBP that can bind to AU-rich elements
that are mainly located in 3′ UTR of mRNAs [48]. There is evidence
showing the effect of RBPs on the ceRNA interplay responsible for tu-
morigenesis [49,50], while little is known about its involvement in
chemoresistance. Kojima et al [51] reported the binding interaction of
an RBP, miRNA and mRNA in paclitaxel-resistant prostate cancer. Ac-
cording to their study, increasing the expression of HuR leads to a de-
crease in the expression of miR-34a, which upregulates the expression
of B-cell lymphoma 2 (Bcl-2) and sirtuin 1 (SIRT1) and results in pa-
clitaxel resistance by reducing cell apoptosis. SIRT1 overexpression is
also responsible for CDDP resistance [52]. These findings are supported
by a study in colon cancer, that demonstrated that SIRT1 expression is
involved in a network with miRNAs to regulate the effect of CDDP
chemotherapy [53]. Thus, the expression of SIRT1 is potentially regu-
lated by RBP-miRNA interactions in colon cancer. Another study re-
ported that the translation of the topoisomerase IIα (TOP2A) mRNA is
enhanced by HuR and that this mRNA competes with miR-548c-3p. In

HeLa cells, the TOP2A expression level is altered by overexpression of
miR-548c-3p or inhibition of HuR, and TOP2A controls the cellular
response to the anticancer chemotherapeutic agent doxorubicin (DOX)
[54]. In addition, binding of proteins may alter the secondary structure
of an RNA transcript, which increases or decreases the binding of ad-
ditional proteins or the binding of miRNAs to its MREs [55,56]. Ac-
cording to Kedde et al, the RBP Pumilios is needed for miR-221/miR-
222-mediated repression of the p27 tumor suppressor. Pumilio RNA-
binding family member 1(PUM1) binding induces structural changes in
3′ UTR of the p27 transcript that expose a binding site for miR-221/
miR-222, efficiently suppressing p27 expression and modulating cell
cycle progression [57]. These studies explain the effect of RBPs and
secondary structure on miRNA-mRNA interactions. However, the
question of whether the miRNA-lncRNA interaction and ceRNA cross-
talk involved in chemoresistance is also affected by RBPs and the sec-
ondary structure of RNA transcripts still needs to be answered. This
transcriptomal landscape provides a basis for researchers to explore and
fine-tune the actions of ceRNA transcripts to overcome the hurdle of
chemoresistance.

3.4. Single Nucleotide Polymorphism (SNPs)

SNPs in 3′ UTR MRE in miRNA targets, also known as miRSNPs,
show a specific mode of miRNA-mRNA regulation in genetic informa-
tion. SNPs in MREs can destroy, create or/and modify the binding re-
lationship of miRNAs with mRNAs [58,59], thereby resulting in gain or
loss of function. A gain or loss of function in 3′ UTR either creates new
miRNA-binding sites to reduce protein translation or abolishes miRNA-
mRNA binding and results in high protein expression, respectively [60].
For example, Kim and coworkers reported that the rs12373A > C
polymorphism in the 3′ UTR of pancreatic adenocarcinoma upregulated
factor (PAUF) can increase the binding efficiency of miR-571 and cause
suppression of the PAUF gene, which may play a key role in the survival
outcome of CRC patients [61]. Another study reported the effect of
SNPs on chemoresistance, in which SNP-829C > T near the binding
site of miR-24 in the DHFR 3′ UTR results in loss of function. DHFR
expression is affected by the interfering of SNPs with the function of
miR-24, leading to the overexpression of DHFR and MTX resistance
[62]. The examples presented above show that any loss or gain of
function due to SNPs in MREs may affect ceRNA crosstalk in cancer as
well as chemoresistance.

Although some of the ceRNA efficiency-related factors stated above
still lack direct proof of being involved in chemoresistance in GTAs, all
this indirect evidence offers a research landscape for researchers to
explore the association of the above mentioned dynamics in GTA che-
motherapeutic response.

4. Influence of the TME on ceRNA networks and chemoresistance

Current studies show that the crucial role of regulating the effi-
ciency of the ceRNA network is not limited to the internal activities in a
single tumor cell, but also includes the bidirectional communications
between cells and their microenvironment. The TME is composed of
cellular components including cancer associated fibroblasts (CAFs),
immune cells, vascular endothelial cells and tumor stem cells [63] and
non-cellular components including cytokines, metabolites, growth fac-
tors and extracellular matrix proteins [64]. In the internal micro-
environment of tumors with fewer or no blood vessels, hypoxia is the
most prominent and severe environmental condition [65]. The complex
scenes of intercomponent interactions (cells to cells, or stroma to cells)
and special conditions (such as hypoxia) in the TME can all affect the
working efficiency of the ceRNA network in tumor cells, which in turn
will affect the malignant phenotypes of tumors, such as proliferation,
invasion, metastasis or chemoresistance. The research in this field is in
its infancy, as there are only a few in-depth studies on this subject that
have demonstrated the exact mechanism by which the TME affects the
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function of the ceRNA network in tumors, and even less is known about
the TME and the chemoresistance of GTA. Nevertheless, a few studies
have shown that the TME affects the expression of non-coding RNAs in
tumors, but this change in RNA expression has considerable potential
for affecting the efficiency of the ceRNA network.

4.1. TME regulates the working efficiency of ceRNAs to affect the malignant
phenotypes of tumors

When the cell components in the TME communicate with tumor
cells, they have a chance to impact the efficiency of the ceRNA network
in tumor cells. For example, the study of Ren J and colleagues indicated
that the lncRNA H19 expressed in colorectal cancer-associated fibro-
blasts could be encapsulated and in extracellular vesicles (EVs) to enter
tumor cells as a sponge for miR-141, thereby attenuating the inhibitory
effect of miR-141 on β-catenin, to activate the Wnt/β-catenin pathway.
By this mechanism, colorectal cancer cells acquired stemness and che-
moresistance to oxaliplatin [66] (Fig. 2A). It is not difficult to see from
the above study that EVs are an important medium of information ex-
change in the TME. In fact, in addition to CAF cells, between other
cellular components in the TME and tumor cells, or between tumor cells

and tumor cells, the exchanges of biological molecules or information
can be completed by releasing EVs, which ultimately influence the
functions of tumor cells. For example, a study in esophageal cancer cell
lines found that after lncRNA ZFAS1 packed in EVs was incorporated
into tumor cells, miR-124 could be bound by ZFAS1 and impaired in its
functions, which indirectly weakened its inhibitory effect on its
downstream target STAT3 and finally promoted the migration and
growth ability of esophageal cancer cells [67] (Fig. 2B). Moreover,
STAT3β, one isoform of STAT3, suppresses chemoresistance of cisplatin
and 5-fluorouracil and cancer stemness in esophageal cancer [68].

The immune microenvironment is also an important part of the
TME. It is composed of many categories of immune cells that can es-
tablish crosstalk with tumor cells to affect their internal signaling
pathways. Ye Y and its colleagues found that liver cancer-associated
macrophages could stimulate the overexpression of lncRNA H19 in liver
cancer cells, which was a sponge of miR-193b and in turn hindered the
ability of miR-193b to bind its target mRNAs. Thus, the expression of
the downstream target genes EGFR, PTEN and KRAS was significantly
increased, which promoted the EMT and stemness of liver cancer cells,
leading to a worse prognosis [69] (Fig. 2C). Moreover, it was reported
that the overexpression of EGFR enhanced the resistance to PARP

Fig. 2. The components of TME affect the ceRNA networks and have potential roles in regulating the chemoresistance in tumor cells.
A) EVs from CAFs transported H19 into CRC cells and activated the ceRNA network of H19/miR-141/β-catenin to promote the chemoresistance of tumor cells. B)
ZFAS1 in EVs from TME was transported into ESCC cells and activated the ceRNA network of ZFAS1/miR-124/STAT3. STAT3 may play a role in reversing the
chemoresistance of tumor cells. C) EVs from CAM transported H19 into liver cancer cells and activated the ceRNA network of H19/miR-193b/EGFR. EGFR may play
a role in promoting chemoresistance of tumor cells. D) Hypoxia activated two ceRNA networks, lncRNA NORAD/miR-135a-3p/Rho A and UCA1/miR-7-5p/EGFR.
MiR-135a-3p may play a role in reversing the chemoresistance of tumor cells. E) The major component of ECM, HA, bound to CD44 and activated the ceRNA network
of UCA/miR-145/ROCK. MiR-145 may play a role in reversing the chemoresistance of tumor cells.
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inhibitor in hepatocellular carcinoma [70].
In addition to the cellular components in the TME, non-cellular

components can also have an impact on tumor cells to affect the effi-
ciency of the ceRNA network. Li H and colleagues indicated that in
pancreatic cancer, the hypoxic environment of the tumor induced the
upregulation of the lncRNA NORAD, which acted as a sponge of miR-
135a-3p to indirectly cause an increase in the expression of miR-135a-
3p target Rho A. Rho A is an important downstream molecule of hy-
poxia and a regulator of EMT (Fig. 2D). This hypoxia-induced func-
tional change in the ceRNA network of NORAD/miR-135a-3p/Rho A
ultimately promoted the EMT process of tumor cells [71]. What’s more,
some research found that enhanced the expression of miR-135a-3p can
induce a sensitivity to cisplatin and paclitaxel of tumor cells in ovarian
cancer [72], which suggests a potential role of hypoxia-induced ceRNA
network containing miR-135a-3p in the regulation of chemoresistance.
Yang Z and colleagues also proved that hypoxia could affect a ceRNA
network of UCA1/miR-7-5p/EGFR to promote the migration of gastric
cancer cells by establishing a hypoxia-tolerant gastric cancer cell line
[73]. Hypoxia increased the expression of UCA1 and in turn upregu-
lated the expression of EGFR mRNA, which plays a potential role in
tumor chemoresistance (Fig. 2D).

In addition to hypoxia, the review by L.Y.W. Bourguignon noted
that hyaluronan (HA), the main active ingredient of extracellular ma-
trix (ECM), could act on the tumor cell membrane receptor CD44 and
affect the signaling pathways of microRNAs and lncRNAs to influence
the corresponding phenotype of tumor cells [74]. In that review article,
he also did a few in vitro experiments that confirmed that in head and
neck cancer cell lines, the addition of HA components could promote
the high expression of the lncRNA UCA1, relatively low expression of
miR-145 (which targets UCA1), and the high expression of the proven
target gene ROCK of miR-145 [75] (Fig. 2E). This indicated that HA, a
non-cellular component of the microenvironment, could affect the
lncRNA/UCA1/miR-145/ROCK ceRNA network in tumor cells, and it
was also proven in functional experiments that the alternation of this
ceRNA network could affect the invasion and migration ability of tumor
cells [74]. What’s more, as a tumor suppressor, miR-145 played a role
in reversing chemoresistance in many different tumors [76,77]. In
short, the communication between TME components and tumor cells
can regulate the ceRNA network and in turn affect the malignant
phenotype of tumors.

4.2. TME regulates the expression of non-coding RNAs and has the potential
to affect the ceRNA network

There are many ways that the tumor microenvironment affects the
expression of non-coding RNAs in tumor cells, either through the EVs
mentioned above or through core secreted proteins acting on tumor
cells to alter their gene expression.

An increasing number of studies have indicated that EVs envelop
non-coding RNAs and transport them into the TME as carriers, changing
the quantity of RNAs in cells and affecting the development and ma-
lignant phenotype of tumors. In addition to the examples given above,
there are some other examples where EVs carry non-coding RNA to
affect their expression. For example, in a study on epithelial ovarian
cancer, the authors found that when EVs secreted from tumor-asso-
ciated macrophages were cocultured with human umbilical vein en-
dothelial cells (HUVECs), the expression of miR-146b-5p within
HUVECs increased and further inhibited the migration ability of en-
dothelial cells to a certain extent [78]. However, two functional
lncRNAs, ENST00000444164 and ENST0000043768 packaged in EVs
from tumor cells counteracted the enhanced migration ability of en-
dothelial cells induced by miR-146b-5p containing EVs [78]. It is not
difficult to see from the above findings that the regulatory effect of the
TME on the malignant phenotype of tumors is not limited to tumor cells
but can also be realized in other cell components of the TME, such as
endothelial cells. A study in colorectal cancer also indicated that EVs

derived from CAFs could encapsulate the lncRNA CCAL and transport it
into tumor cells, where it activates the β-catenin pathway to make cells
resistant to Oxa [79]. Moreover, CCAL has been shown to form a ceRNA
regulatory network with miR-149/FOXM1 in gastric cancer to affect the
metastasis of gastric cancer [79]. These examples demonstrate that the
TME can regulate the content of non-coding RNA in cells via EVs. The
alteration of this content has the potential to affect the ceRNA network,
and may affect the malignant phenotypes of tumor cells such as drug
resistance. However, research in this area still needs to be further ex-
plored in GTA.

TGF-β is one of the most common and versatile secreted proteins in
the TME. It can be paracrinely secreted by CAFs, endothelial cells, or
tumor cells themselves and then binds to the type I and II receptors on
the surface of tumor cell membranes to activate the SMAD signaling
pathway or SMAD-independent pathways, such as MAPK and PI3K/
AKT, or other important tumor-related pathways to affect the malignant
phenotype of tumor cells [80]. However, in recent years, studies have
found that not all of the mechanisms of paracrine TGF-β are activated
and TGF-β can also cause abnormal expression of non-coding RNAs,
such as lncRNAs and miRNAs in tumor cells. For example, an in vitro
study conducted on breast cancer cell lines and primary cultured fi-
broblasts derived from breast cancer patients showed that TGF-β se-
creted by CAFs could activate SMAD2/SMAD3/SMAD4 molecules in
tumor cells, and the activated SMADs bound to the promoter region of
the lncRNA HOTAIR to promote the transcription and increase the ex-
pression of HOTAIR [81]. Moreover, in research on gastric cancer and
ovarian cancer, it was found that HOTAIR could play the role of miRNA
sponge, weakening the inhibitory effect of miRNAs on other target
genes related to chemoresistance, and finally making gastric cancer and
breast cancer cells resistant to trastuzumab and cisplatin,respectively
[82,83]. Therefore, the secretion of cytokines such as TGF-β into the
tumor microenvironment can cause abnormal expression of non-coding
RNAs in tumor cells. This abnormality has the potential to change the
drug sensitivity of tumor cells by affecting the downstream ceRNA
network. In GTAs, there are some reported lncRNAs and miRNAs that
can be regulated by TGF-β expression[84–87]. In summary, research on
the effect of cytokines secreted by the TME on the function of the
ceRNA network in GTAs affecting chemoresistance has considerable
prospects.

5. lncRNA-miRNA-mRNA Network in response to chemotherapy of
GTAs

5.1. CRC

CRC is the 3rd most commonly diagnosed cancer (10.2% of total
cases) and the 2nd leading cause of cancer death (9.2% of total cases)
[1]. Chemotherapy for advanced patients or adjuvant chemotherapy
following surgery is commonly used as a clinical treatment. However,
more than 90% of treatment failures are due to the resistance to che-
motherapy [88]. Possible dysregulation of the crosstalk between
lncRNAs, miRNAs and mRNAs associated with chemoresistance has
been studied in human CRC [89,90]. One of the most studied lncRNAs,
H19, has been found to be upregulated in recurrent CRC patients and to
act as a “promoter” of 5-FU resistance in CRC cells. Mechanistically and
functionally, H19 activates autophagy through SIRT1 to induce cancer
chemoresistance. H19 binds to miR-194–5p and competes with SIRT
[91]. Thus, miR-194-5p acts as a “suppressor” of 5-FU resistance. SIRTs,
which are autophagy elements and members of the NAD+-dependent
histone deacetylase family, can also activate autophagy and protect
cells from chemoresistance [92]. This study suggests that 5-FU re-
sistance is the result of the crosstalk of H19/miR194–5p/SIRT1-medi-
ated autophagy (Fig. 3) [91]. Another study provides conclusive evi-
dence that polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3)
expression is regulated via the linc01296/miR-26a/GALNT3 axis,
which in turn modifies O-glycosylation on Mucin 1, cell surface-
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associated (MUC1). O-glycosylated MUC1 inactivates the P13 K/AKT
pathway, which is a fundamental oncogenic pathway involved in che-
moresistance and proliferation and promotes cell survival when acti-
vated. linc01296 and GALNT3 act as resistance “promoters”, while
miR-26a acts as a “suppressor”. This regulatory linc01296/miR-26a/
GALNT3/MUC1 crosstalk network further activates the PI3K/AKT cas-
cade during the progression of CRC as well as increasing chemoresis-
tance to 5-FU (Fig. 3) [93]. Other examples of mRNA-miRNA-lncRNA
crosstalk involved in the chemoresistance of CRC are listed in detail in
Table 1.

5.2. GC

GC is the 5th most commonly diagnosed cancer (5.7% of total cases)
and 3rd leading cause of cancer death (8.2% of total cases) [1]. Che-
motherapy including new adjuvants, adjuvants or advanced treatment
options, is the mainly treatment applied [94]. GC patients who show
resistance against chemotherapy have a poor five-year-survival rate
[95]. A variety of studies on miRNAs, lncRNAs and their crosstalk in GC
chemotherapy [96,97] have confirmed that oncogenic lncRNA-D63785
expression is high in GC and that the level is inversely correlated with
the expression of miRNA-422a. One of the members of the myocyte
enhancer factor 2 (MEF2) transcription factor family, myocyte en-
hancer factor-2D (MEF2D), also possesses a direct binding site for
miRNA-422a. In cancerous cells, MEF2D has a well-established onco-
genic role via accelerating metastasis, decreasing apoptosis, and in-
creasing proliferation as well as chemoresistance to different drugs
[98,99]. Downregulation of MEF2D by miRNA-422a, the “suppressor”

of DOX resistance, is associated with high drug sensitivity. Knockdown
of lncRNA-D63785, the “promoter” of DOX resistance, is accompanied
by high expression levels of miR-422a and low expression levels of
MEF2D, which sensitize GC cells to apoptosis induced by the anticancer
drug doxorubicin (DOX). lncRNAs may act as ceRNAs for miRNAs and
may stimulate chemoresistance by blocking miRNA-dependent sup-
pression of mRNAs (Fig. 4) [100]. Recently, another study also reported
the regulation of the MALAT1/miR-30b/ATG5 ceRNA network in the
chemoresistance of GC. The lncRNA metastasis-associated lung adeno-
carcinoma transcript 1 (MALAT1), which is highly expressed in GC,
sequesters miR-30b by binding to the autophagy-related 5 (ATG5) gene.
The upregulation of ATG5 induces autophagy, which in turn leads to
CDDP resistance (Fig. 4) [101]. In this network, MALAT1 is a drug
resistance "suppressor" and miR-30b is a drug resistance "promoter". We
listed the ceRNA networks involved in regulating chemoresistance in
other gastric cancers in Table 1. These studies provide promising novel
therapeutic targets to overcome resistance against chemotherapeutic
drugs used for GC.

5.3. ESCC

ESCC ranks 7th in terms of newly diagnosed cancers (3.2% of total
diagnosed cases) and 6th leading as a cause of cancer death (5.3% of
total death cases) [1]. Chemotherapy based on the combination of
CDDP and 5-FU is widely used chemotherapy for ESCC but over the
years there has been less improvement in the survival rate of patients,
which is probably due to the presence of an acquired drug resistance
[102,103]. As in other GTAs, the lncRNA-miRNA-mRNA regulatory

Fig. 3. Dysregulation of the ceRNA network causes chemoresistance in CRC. Left) 5-FU resistance caused via H19/miR194–5p/SIRT1-mediated autophagy. Right)
linc01296/miR-26a/GALNT3/MUC1 crosstalk activates the P13 K pathway which increases proliferation to cause chemoresistance to 5-FU.

Table 1
The lncRNA-miRNA-mRNA networks involved in chemoresistance of CRC, GC and ESCC.

Cancer Type lncRNA as ceRNA Expression Sponged microRNA Targeted mRNA Drug resistance Reference

CRC UCA1 (promoter) Up miR-204-5p (suppressor) CREB1 5-FU [106]
XIST (promoter) Up miR-124 (suppressor) SGK1 DOX [3]
TUG1 (promoter) Up miR-186 (suppressor) CPEB2 MTX [107]
HOTAI (promoter) Up miR-218 (suppressor) VOPP1 5FU [108]
SCARNA2 (promoter) Up miR-342-3p (suppressor) EGFR/BCL2 SOX/5FU [109]
ENST00000547547 (suppressor) Down miR-31 (promoter) ABCB9 5-FU [110]
MEG3 (suppressor) Down miR-141

(promoter)
PDCD4 SOX [111]

ANRIL (promoter) Up Let-7a (suppressor) ABCC1 5-FU, SOX [112]
Linc00152 (promoter) Up miR-193a-3p (suppressor) ERBB4 SOX [113]
H19 (promoter) Up miR-194-5p (suppressor) SIRT1 5-FU [91]
linc01296 (promoter) Up MiR-26a (suppressor) GALNT3 5-FU [65]

GC BLACAT1 (promoter) Up miR-361 (suppressor) ABCB1 SOX [114]
HOTAIR (promoter) Up miR-17-5p (suppressor) PTEN CDDP, ADR,

5-FU
[115]

HOTAIR (promoter) Up miR-34a (suppressor) Rictor CDDP [97]
lncR-D63785 (promoter) Up miR-422a (suppressor) MEF2D DOX [100]
MALAT1 (promoter) Up miR-23b-3p (suppressor) ATG12 VCR [116]

ESCC TUSC7 (suppressor) Down miR-224 (promoter) DESC1 CDDP [104]
PART1 (promoter) Up miR-129 (suppressor) Bcl-2 Gef [105]
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network regulates different pathways involved in ESCC progression.
The regulatory network of TUSC7/miR-224/DESC1 is reported to be
involved in the chemoresistance of ESCC. The lncRNA tumor suppressor
candidate 7 (TUSC7) is downregulated in ESCC and is a potential target
of upregulated miR-224. Differentially expressed in squamous cell
carcinoma 1 (DESC1) is also downregulated in ESCC and also the target
of miR-224 [104]. DESC1 is a tumor suppressor and triggers cell
apoptosis by downregulating EGFR/AKT pathway. High expression of
drug resistance “suppressor” TUSC7 or inhibition of the drug resistance
“promoter” miR-224 reverses cell proliferation as well as resistance to a
chemotherapy drug, CDDP, by regulating the DESC1/ EGFR/AKT
pathway in ESCC (Fig. 5). Another study also investigated the reg-
ulatory function of the ceRNA network and its involvement in drug
resistance. According to the study, as the drug resistance “promoter”,
the lncRNA prostate androgen-regulated transcript 1 (PART1) is upre-
gulated in gefitinib-resistant cells in comparison to normal ESSC cells.
Upregulation of PART1 promotes drug resistance by sponging the drug
resistance “suppressor” miR-129 to accelerate the Bcl-2/Bax pathway.
The Bcl-2/Bax pathway in turn inhibits apoptotic proteins as well as cell
apoptosis, thereby promoting ESCC cells resistance to the anticancer
drug, gefitinib (Fig. 5) [105]. The studies presented above identify a
complex ceRNA network that is actively involved in the regulation of
drug resistance in ESCC. However, the regulation of ceRNA in response
to ESCC chemotherapy is not well understood and needs to be explored
in future studies.

6. Conclusion and Perspectives

Despite many improvements in the chemotherapeutic treatment of
GTAs, resistance to anticancer drugs is still a global challenge to the
effectiveness of chemotherapy. Chemoresistance has attracted the at-
tention of researchers due to its significant clinical implications, which
has led to the identification of numerous mechanisms responsible for
the resistance to chemotherapy. Non-coding RNAs, specifically miRNAs
and lncRNAs, are important epigenetic regulators of several mechan-
isms underlying drug resistance.

Dynamic factors affecting the ceRNA networks including RNA
editing, alternative splicing, RNA binding proteins, the secondary
structure of RNA transcripts and SNPs, are promising research targets
for regulating GTA chemoresistance. Such a network can regulate many
biological functions, such as an increase or decrease in the transmission
and activity of the drug, the alternation of the target gene, the induction
or reduction of the apoptosis of cells and the progression of DNA repair.
All these biological functions can change the chemoresistance of cancer
cells.

The TME is considered as an emerging target for the cancer che-
motherapy due to the varying levels of its influence on carcinogenesis
as well as on chemoresitance. Current research is focusing on the
multiple reciprocal interactions between the TME, as individual cancer-
associated entity, and the ceRNA network, which may be targeted for a
successful chemotheraputic response. In GTA cancers, the ceRNA net-
work is widely reported to be involved in the mechanism of chemore-
sistance. In the ceRNA network, miRNAs or lncRNAs may act as “pro-
moters” or “suppressors” in different conditions to regulate
chemoresistance. Thus, the ceRNA network provides a platform to
overcome chemoresistance and improve the survival of cancer patients.

Treatment strategies of “replacement” or ‘inhibition” can be based
on the down- or up-regulation of miRNAs in GTAs, which may improve
the outcome of anticancer drug treatments. Currently, several tran-
scriptomic studies are geared towards investigating the dysregulation of
miRNA and lncRNA in GTAs but still need to investigate the ceRNA
network and its involvement in chemoresistance. The regulation of this
dysregulation by the use of non-coding RNA-based drugs is one of the
fundamental objectives in overcoming chemoresistance. The field of
non-coding RNA therapeutics is still in its infancy and needs to explore
the fine association of lncRNAs, miRNAs and mRNAs in response to
chemotherapeutic drugs in order to provide promising opportunities for
effective treatment strategies to overcome anticancer drug resistance.
Moreover, studies should explore the use of ceRNA network in pre-
dicting possible treatment and resistance responses, which will be
helpful to obtain individualized chemotherapeutic treatment as well as
to improve patient outcomes and survival.

Fig. 4. Dysregulation of the ceRNA network causes chemoresistance in GC. Left) lncRNA-D63785/miR-422a/MAF2D crosstalk decreases the apoptosis of GC cells to
promote chemoresistance to DOX. Right) MALAT1/miR-30b/ATG5 crosstalk promotes chemoresistance of CDDP by increasing GC cells autophagy.

Fig. 5. Dysregulation of the ceRNA network causes chemoresis-
tance in ESCC. Left) The TUSC7/miR-224/DESC1 regulatory net-
work activates the EGFR/AKT pathway, resulting in an increase in
proliferation, which causes chemoresistance to 5-FU/CDDP.
Right) PART1/miR-129/Bcl2 crosstalk increases the expression of
Bcl2, which leads to a chemoresistance to gefitinib by decreasing
apoptosis in ESCC cells.
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