University of Cape Coast Institutional Repository

A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes

Show simple item record

dc.contributor.author Adu, Michael O.
dc.contributor.author Chatot, Antoine
dc.contributor.author Wiesel, Lea
dc.contributor.author Bennett, Malcolm J.
dc.contributor.author Broadley, MartLionel X. Dupuyin R.
dc.contributor.author White, Philip J.
dc.contributor.author Dupuy, Lionel X.
dc.date.accessioned 2021-01-08T10:19:38Z
dc.date.available 2021-01-08T10:19:38Z
dc.date.issued 2013-09-02
dc.identifier.issn 23105496
dc.identifier.uri http://hdl.handle.net/123456789/4497
dc.description 10p:, ill. en_US
dc.description.abstract The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipment and adaptable to most laboratory and glasshouse environments, and its application to quantify environmental and temporal variation in root traits between genotypes of Brassica rapa L. Plants were supplied with a complete nutrient solution through the wick of a germination paper. Images of root systems were acquired without manual intervention, over extended periods, using multiple scanners controlled by customized software. Mixed-effects models were used to describe the sources of variation in root traits contributing to root system architecture estimated from digital images. It was calculated that between one and 43 replicates would be required to detect a significant difference (95% CI 50% difference between traits). Broad-sense heritability was highest for shoot biomass traits (>0.60), intermediate (0.25–0.60) for the length and diameter of primary roots and lateral root branching density on the primary root, and lower (<0.25) for other root traits. Models demonstrate that root traits show temporal variations of various types. The phenotyping platform described here can be used to quantify environmental and temporal variation in traits contributing to root system architecture in B. rapa and can be extended to screen the large populations required for breeding for efficient resource acquisition en_US
dc.language.iso en en_US
dc.publisher University of Cape Coast en_US
dc.subject Architecture en_US
dc.subject High-resolution en_US
dc.subject High throughput en_US
dc.subject Model en_US
dc.subject Nitrogen en_US
dc.subject Phenotyping en_US
dc.subject Phosphorus en_US
dc.subject Root en_US
dc.title A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UCC IR


Advanced Search

Browse

My Account