Abstract:
Cowpeas provide food and income for many small-holder farmers in Africa. Cowpea grains contain substantial quantities of protein, carbohydrates, vitamins, and fiber. In areas where subsistence farming is practiced, cowpea’s protein is cheaper than that obtained from other sources such as fish, meat, poultry or dairy products and combines well with cereal grains in diets. However, long-cooking times, typical of many grain legumes, is a major limitation to the utilization of cowpeas especially among the lowincome and growing middle-income population of Africa. Long periods of cooking cowpeas lead to loss of nutrients, loss of useful time and increased greenhouse gas emission through increased burning of firewood. Fast-cooking cowpeas has the potential to deliver highly nutritious food to the hungry within shorter periods, encourage less use of firewood, improve gender equity, increase the consumption of cowpeas respectively while narrow sense heritabilities were 0.84 and 0.88 respectively. Genetic advances were 27.09 and 40.40 respectively. High narrow-sense heritabilities and moderate genetic advance for the fast-cooking trait indicated the presence of additive genes in the trait and the possibility of introgressing the trait into farmer-preferred varieties using conventional selection methods. However, due to significant epistatic gene effects observed, effective selection for fast-cooking trait would be appropriate at advanced generations