University of Cape Coast Institutional Repository

Optimising ventilation to control odour in the ventilated improved pit latrine

Show simple item record

dc.contributor.author Obeng, Peter A.
dc.contributor.author Oduro‑Kwarteng, Sampson
dc.contributor.author Keraita, Bernard
dc.contributor.author Bregnhøj, Henrik
dc.contributor.author Abaidoo, Robert C.
dc.contributor.author Awuah, Esi
dc.contributor.author Konradsen, Flemming
dc.date.accessioned 2021-07-28T13:12:30Z
dc.date.available 2021-07-28T13:12:30Z
dc.date.issued 2018
dc.identifier.issn 23105496
dc.identifier.uri http://hdl.handle.net/123456789/5780
dc.description 10p:, ill. en_US
dc.description.abstract The rate of ventilation through the vent pipe of a ventilated improved pit latrine is the main technical factor that determines its efficiency in odour control aside the maintenance and cleaning practices of the users. Even though the factors affecting the ventilation rate have been well researched, they have not been previously related in a mathematical model to quantify the relative effect of the various factors on the ventilation rate. The objective of this paper is to develop such a model that could be used to optimize and predict the ventilation rate as a function of relevant design criteria and weather conditions. The ventilation rates produced by various design modifications in an experimental ventilated improved pit latrine were measured under monitored weather conditions. A linear regression model was used to assess the relative effect of the various design modifications and the elements of weather on the ventilation rate. It was found that the diameter of the vent pipe is the most important factor which accounts for 53% of variations in the ventilation rate, followed by the external wind speed, which accounts for 25% of changes in ventilation. The provision of windows in other sides of the superstructure other than the windward side leads to a reduction of 32% in the ventilation rate and accounts for 9% of the variations in the ventilation rate. A regression model developed in this study could be used to optimize and predict the ventilation rate based on a set of design criteria and meteorological data en_US
dc.language.iso en en_US
dc.publisher University of Cape Coast en_US
dc.subject VIP latrine en_US
dc.subject Ventilated improved pit en_US
dc.subject Ventilation rate en_US
dc.subject Dry sanitation technology en_US
dc.subject Modelling en_US
dc.title Optimising ventilation to control odour in the ventilated improved pit latrine en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UCC IR


Advanced Search

Browse

My Account