Abstract:
The potential of predicting maturity using total soluble solids (TSS) and identifying organic from inorganic pineapple fruits based on near-infrared (NIR) spectra fingerprints would be beneficial to farmers and consumers alike. In this study, a portable NIR spectrometer and chemometric techniques were combined to simultaneously identify organically produced pineapple fruits from conventionally produced ones (thus organic and inorganic) and also predict total soluble solids. A total of 90 intact pineapple fruits were scanned with the NIR spectrometer while a digital refractometer was used to measure TSS from extracted pineapple juice. After attempting several preprocessing techniques, multivariate calibration models were built using principal component analysis (PCA), K-nearest neighbor (KNN), and linear discriminant analysis (LDA) to identify the classes (organic and conventional pineapple fruits) while partial least squares regression (PLSR) method was used to determine TSS of the fruits. Among the identification techniques, the MSC-PCA-LDA model accurately identified organic from conventionally produced fruits at 100% identification rate. For quantification of TSS, the MSC-PLSR model gave Rp � 0.851 and RMSEC � 0.950 °Brix, and Rc � 0.854 and RMSEP � 0.842 °Brix at 5 principal components in the calibration set and prediction set, respectively. *e results generally indicated that portable NIR spectrometer coupled with the appropriate chemometric tools could be employed for rapid nondestructive examination of pineapple quality and also to detect pineapple fraud due to mislabeling of conventionally produced fruits as organic ones. *is would be helpful to farmers, consumers, and quality control officers