Abstract:
We undertake a theoretical study of edge spin-vortex excitations in fractional quantum Hall fluid. This is done in view of quantised Euler hydrodynamics theory. The dispersions of true excitations for fractions within 0 ≤ ν ≤ 1 are simulated which exhibit universal similarities and differences in behaviour. The differences arise from different edge smoothness and spin (pseudo-spin) polarisations, in addition to spin charge competition. In particular, tuning the spin-charge factor causes coherent spin flipping associated with partial and total polarisations of edge spin-vortices. This observation is tipped as an ideal mechanism for realisation of functional spintronic devices