Abstract:
Trace evidence such as touch (also known as contact) DNA has probative value as a vital forensic investigative tool that can lead to the identification and apprehension of a criminal. While the volume of touch DNA evidence items submitted to forensic laboratories has significantly increased, recovery and amplification of DNA from these items, especially from metal surfaces, remains challenging. Currently little is understood with regards to the underlying mechanisms of metal-DNA interactions in the context of forensic science and how this may impact on DNA recovery. An increased understanding of these mechanisms would allow optimization of methods to improve outcomes when sampling these materials. This paper reviews the basis of DNA binding to metal substrates, the merits and limitations of current methods and future perspectives of improving recovery and amplification of touch DNA from metal surfaces of forensic interest