University of Cape Coast Institutional Repository

Chemoresistance to Cancer Treatment: Benzo-α-Pyrene as Friend or Foe?

Show simple item record

dc.contributor.author Dzobo, Kevin
dc.contributor.author Hassen, Naseeha
dc.contributor.author Senthebane, Dimakatso Alice
dc.contributor.author Thomford, Nicholas Ekow
dc.contributor.author Rowe, Arielle
dc.contributor.author Shipanga, Hendrina
dc.contributor.author Wonkam, Ambroise
dc.contributor.author Parker, M. Iqbal
dc.contributor.author Mowla, Shaheen
dc.contributor.author Dandara, Collet
dc.date.accessioned 2023-10-05T18:16:25Z
dc.date.available 2023-10-05T18:16:25Z
dc.date.issued 2018-04-17
dc.identifier.uri http://hdl.handle.net/123456789/9109
dc.description.abstract Abstract: Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30–40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40–50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells. en_US
dc.language.iso en en_US
dc.publisher Molecules en_US
dc.title Chemoresistance to Cancer Treatment: Benzo-α-Pyrene as Friend or Foe? en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UCC IR


Advanced Search

Browse

My Account